THE

MATHEMATICA

L PRINCIPLES

OF NATURAL PHILOSOPHY

Sir Isaac Newton, John Machin

保

Guelidg Eles......in
Itanctioy
Elo...... 5 o Curuc sretion)

riphe

 Kime 1 in friticus.
 curnee by telcoedsu.

 bidicturiton fion. ire tros F5.274
,

4

THE

mathematical PRINCIPLES O F

Natural Philofophy.

By $\operatorname{Sir} I S A A C N E W T O N$.

Tranflated into Englifh by Andrew Maximiticis

To which are added,
The Laws of the MOON's Motiontaccording to Gravity.

- By John Machin Aftron. Prof. Greju. wim Secr. R. Soc.

In Two Volumes.

$$
L O N D O N
$$

Printed for Benjamin Motte, at the Midile-Temple-Gate, in Fleetfireet.
MDCCXXIX.
-

T 0

Sir HANS SLOANE,

 BARONET, PRESIDENT: OF THECollege of Physicians, AND OF THE
ROTAL SOCIETT.
$S I R$,

HE generous zeal You always fhew for whatever tends to the progrefs and advancement of Learning, both deA mands
DEDICATION.
mands and receives the univerfal acknowledgments of all who profefs or value its feveral branches.

They juftly admire that amidft a clofe attendance on the cares of your Profeflion, in which You now fill the moft honourable Seat, You are indefatigably promoting the improvement of natural knowledge, by carrying on fome laudable defigns of your own, by aflifting and encouraging others, and by adding new ftores to that immenfe treafure, already brought into your extenfive collection, of whatever is rare and valuable in nature or art.

Your

Dedication.

Your beneficent difpofition to countenance and favour Science and Literature, has procured You the efteem of the Learned over all the World; and has induced a Body of Men, the moft eminent for their skill and diligence in all ufeful enquiries, and in purfuing difcoveries for the public good, to make choice of You, to fupply the place of Him, whofe Name will be an everlafting honour to our age and nation.

To whom therefore but to You fhould I offer to infcribe the tranflation of the moft celebrated Work of your Illuftri-
ous
Demication.
ous Predeceffor? which, on account of its incomparable Author, and from the dignity of the Subject, claims and deferves your acceptance, even tho' it pafs'd thro' my hands : a lefs valuable Piece I fhould not have prefumed to prefent You with. I am, with the greateft refpect,

$$
S I R \text {, }
$$

Your moft obedient, and

> mof humble Servait,

Andr. Motte.

THE

Authors Preface.

I NCE the ancients (as we are told by Pappus) made great account of the fcience of Mechanics in the inveftigation of naturab things; and the moderns, laying afide fubftantial forms and occult qualities, have endeavoured to fubject the phariomena of nature to the lazes of mathematics; I have in this treatife cultivated $M a$ thematics, fo far as it regards Pbilofophy. The ancients confidered Mechanics in a tweofold refpect; as rational, which proceeds accurately by demonftration, and practical. To practical Mechanics all the manual arts belong, from which Mechanics took its name. But as artificers do not work weith perfect accuracy, it comes to pals that Mechanics is fo difinguifhed from Geometry, that what is perfectly A accurate

The Author's Preface.
accurate is called Geometrical, what is lefs fo is called Mecbanical.' But the errors are not in the art, lut in the artificers. He that reorks zeith lefs accuracy, is an imperfect Mechanic, and if any could work with perfect accuracy, be would le the moft perfect Mechanic of all. For the defcription of riabt lines and circles, upon which Geometry is founded, belongs to Mechanics. Geometry does not teach us to diaze thefe lines, but requires them to le dracen. For it requires that the learner fbould firgt be taught to defcribe thefe accurately, before be enters upon Geometry; then it fiews bowe by thefe operations problems may be folved. To defcribe right lines and circles are problems, but not geometrical problems. The folution of thefe problems is required from Mechanics; and ly Geometry the ufe of them, when So folved, is heren. eAnd it is the glory of Geometry that from thofe fere principles, fetched from reithout, it is able to produce $\int 0$ many things. Therefore Geometry is founded in mechanical prattice, and is nothing but that part of univerfal Mechanics which accurately propofes and demonftrates the art of meafuring. But fince the manual arts are cbiefly

The Author's Preface.

chiefly converfant in the moving of bodies, it comes to pafs that Geometry is commonly referred to their magnitudes, and Mechanics to their motion. In this Senfe Rational Mechanics will be the fcience of motions refulting from any forces whatfoever and of the forces required to produce any motions, accurately propofed and demomfrated. This part of Mechanics was cultivated by the ancients in the Five Pozvers zebich relate to manual arts, who confidered gravity (it not being a manual power) no otherwife than as it moved weeights by thofe powers. Our defign not refpecting arts but philofophy, and our Jubject, not manual but natural pozers, we confider chiefly thofe things which relate to gravity, levity, elaftic force, the refiftance of fuids, and the like forces webether attractive or impulfive. And therefore we offer this work as mathematical principles of philofophy. For all the diffculty of philofophy feems to confift in this, from the phanomena of motions to invefigate the forces of Nature, and then from thefe forces to demonftrate the other phanomena. And to this end, the general propofitions in the firft and fecond book are directed. In the third book roe give an example of this in the explication of A 2

The Author's Prefacf.

the Syfiem of the World. For by the propofitions mathematically demonilirated in the firft books, wee there derive from the celeftial phanomena, the forces of Gravity with which bodies tend to the Sun and the feveral Planets. Then from thefe forces by other propofitions, zebich are alfo mathenatical, ree deduce the motions of the Planets, the Comets, the Moon, and the Sea. I wilh we could derive the reft of the phanomena of Nature by the fame kind of reafoning from mechanical principles. For 1 amz induced by many reafons to fusiect that they may all depend upon certain forces ly which the particles of lodies, by fome caufes bitherto unknowen, are either mutually impelled towards each other and cohere in regular figures, or are repelled and recede from each other; which forces being unknown, Pbilofophers have hitherto attempted the fearch of N'ature in vain. But I bope the principles bere laid dozen zeill afford fome light either to that, or foine truer, method of Philosophy.

In the fullication of this Work, the moft acute and universally learned Mr. Edmund Halley not only affified me with bis pains in correcting the prefs and taking care of the fcbemes, but it weas to
bis

The Author's Preface.

bis Solicitations that its becoming publick is owing. For when be bad obtained of me my dennon,'rations of the figure of the celefial orbits, be continually prefjed me to communicate the fame to the Royal Society; who afterwards by their kind encouragement and entreaties, engaged me to think of puolijoing then. But after I bad begun to confider the inequalities of the lunar motions, and had entered upon forme other things relating to the lawes and measures of gravity, and other forces; and the figures that would be defiribed by bodices attracted according to given lares; and the motion of Several bodies moving among themselves; the motion of bodies in reffing mediums; the forces, densities, and motions of mediums; the orbits of the Comets, and Such like; 1 put of that publication till I bad made a Search into thole matters, and could put out the resole together. What rebates to the Lunar motions (being inperfect) I have put all together in the corollaries of prop. 66. to avoid being obliged to propose aid dititinctly demonPirate the several things there contained in a method more prolix than the fibjet deferved, and interrupt the fries of the Several propositions. Some things A 3
found

The Author's Preface.

found out after the reft, I chose to infort in places lees suitable, rather than change the number of the propofitions and the citations. I heartily beg that what I have here done may be read zoith candour, and that the defects I have been guilty of upon this difficult subject may be, not fo much reprehended, as kindly supplied, and inveftigated by new endeavours of my readers.

Cambridge, Thin. Coll. May 8. 1686.

If. Newton.

In the Second Edition the Second SeEtion of the firft Book was enlarged. In the Seventh Section of the Second Book the theory of the reffifances of fluids was more accurately invefigated, and confirmed by new experiments. In the third Book the Moon's Theory and the Mraceffion of the Equinoxes were more futby deduced from their principles; and the theory of the Comets was confirmed by more examples of the calculation of their orbits, done aldo with greater accuracy.

In this third Edition, the reffifance of mediums is fomezebat more largely bandled than before; and nere experiments of the refifiance of beavy bodies falling in air are added. In the third Book, the argument to prove that the Moon is retained in its orbit by the force of gravity is enlarged on. And there are added newe obfervations of Mr. Pound's of the proportion of the diameters of Jupiter to each other: There are befides added Mr. Kirk's objervations of the Comet in 1680. the orbit of that Comet computed in an ellipfis by 'Dr. Halley; and the orbit of the Comet in 1723 . computed by Mr. Brad.ey.

A_{4}
THE

THE
PREFACE
0 F

Mr. Roger Cotes,

To the Second Edition of this Work, fo far as it relates to the Inventions and Dif coveries herein contained.

HOSE who have treated of natural philofophy, may be nearly reduced to three claffes. Of thefe fome have attributed to the feveral fpecies of things, fpecific and occult qualities; on which, in a manner unknown, they make the operations of the feveral bodies to depend. The fum of the doctrine of the Schools derived from Arifotle and the Peripatetics is herein contained. They affirm that the feveral effects of bodies arife

Mr. Cotes's Preface.

arife from the particular natures of thofe bodies. But whence it is that bodies derive thofe natures they don't tell us; and therefore they tell us nothing. And being entirely employed in giving nomes to things, and not in fearching into things themfelves, we may fay that they bave invented a philofophical way of fpeaking, but not that they have made known to us true philofophy.

Others therefore by laying afide that ufelefs heap of words, thought to employ their pains to betier purpofe. There fuppofed all matter homogeneous, and that the variety of forms which is feen in bodies arifes from lome very plain and fimple affetions of the component particles. And by going on from fimple things to thofe which are more compounded they certainly proceed right; if they attribute no other properties to thofe primary affections of the particles than Nature has done. Bur when they take a liberty of imagining at pkafure unknown figures and magnitudes, and uncertain fituations and motions of the parts; and moreover of fuppofing occult fluids, freely pervading the pores of bodies, endued with an all-performing fubtily, and agitated with occule motions; they now run out into dreams and chimera's, and neglect the true conftitution of things; which certainly is not to be expected from fallacious conjectures, when we can fcarce reach it by the moft certain obfervations. Thofe who ferch from hypothefes the foundation on which they build their fpeculations, may form indeed an ingenious romance, but a romance it will ftill be.

There is left then the third clafs, which profefs experimental philofophy. Thefe indeed derive the caufes of all things from the moft fimple principies poffibie;

Mr. Cotests Preface.

poffible; but then they affume nothing as a principle, that is not proved by phrnomena. They frame no hypothefes, nor receive them into philofophy otherwife than as queftions whofe truth may be difputed. They proceed therefore in a twofold method, fynthetical and analytical. From fome felect phanomena they deduce by analyfis the sorces of nature, and the more fimple laws of forces; and from thence by fynthefis thew the conflitution of the reft. This is that incomparably beft way of philofophizing, which our renowned aathor moft jufly embraced before the reft; and thought alone worthy to be cultivated and adorned by his excellent labours. Of this he has given us a moft illuftrious example, by the explication of the Syftem of the World, moft happily deduced from the Theory of Gravity. That the virtue of gravity was found in all bodies, others fufpected, or imagined before him; but he was the only and the firft philoopher that could demonftrate it from appearances, and make it a folid foundation to the moft noble fpeculations.

I know indeed that fome perfons and thofe of great name, too much prepoffeffed with certain prejudices, are unwilling to affent to this new principle, and are ready to prefer uncertain notions to certain. It is not my intention to detract from the reputation of thefe eminent men; I fhall only lay before the reader fuch confiderations as will enab.e him to pals an equitable fentence in this difpute.

Therefore that we may begin our reafoning from what is moft fimple and neareft to us; let us confider a little what is the nature of gravity with us on Earth, that we may proceed the more fafely

Mr. Cotes's Preface.

Gafely when we come to confider it in the heavenly bodies, that lie at fo vaft a diftance from us. It is now agreed by all philofophers that all circumterreftrial bodies gravitate towards the Earth. That no bodies really light are to be found, is now confirmed by manifold experience. That which is relative levity, is not true levity, but apparent only; and arifs from the preponderating gravity of the contiguous bodies.

Moreover, as all bodies gravitate towards the Earth, fo does the Earth again towards bodies. That the action of gravity is mutual, and equal on borh fider, is thus proved. Let the mafs of the Earth be diftinguifhed into any two parts whatever, either equal, or any how unequal'; now if the ueights of the parts towards each other were not mutually equal, the leffer weight would give way to the greater, and the two parts joined together would move on ad infinitum in a right line towards that part to which the greater weight tends; altogether againft experience. Therefore we mutt fay that the weights of the parts are conftituted in equilibrio; that is, that the action of gravity is mutual and equal on both fides.

The weights of bodies, at equal diftances from the centre of the Earth, are as the quantitics of matter in the bodies. This is collected from the equal acceleration of all bodies that fall from a flate of reft by the force of their weights; for the forces by which unequal bodies are equally accelerated mult be proportional to the quantities of the matter to be moved. Now that all bodies are in falling equally accelerated appears from hence, thas when the refiftance of the air is taken away, as it is under an exhaufted receiver, bodies falling defcribe

Mr. Cotes's Preface.

defcribe equal fpaces in equal times; and this is yet more accurately proved by the experiments of pendulums.

The attrative forces of bodies at equal diftances, are as the quantities of matter in the bodies. For fince bodies gravitate towards the Earth, and the Earth again towards bodies with equal moments; the weight of the Earth towards every body, or the force with which the body attrats the Earth, will be equal to the weight of the fame body towards the Earth. But this weight was hewn to be as the quantity of matter in the body; and therefore the force with which every body attracts the Earth, or the abfolute force of the bady , will be as the fame quantity of matter.

Therefore the attrattive force of the entire bcdies arifes from, and is compounded of, the attraCtive forces of the parts ; becaufe as was juft hewn, if the bulk of the matter be augmented or diminifhed, its virtue is proportionably augmented or diminifhed. We muft therefore conclude that the action of the Eath is compounded of the united actions of its parts; and therefore that all teireftrial bodies mult attrate each other mutually, with abfolute forces that are as the matter attracting. This is the nature of graviry upon Earth; let us now fee what it is ia the Heavens.
That every body perfeveres in its flate either of reft, or of moving uniformly in a right line, unlefs in fo far as it is compelled to change that fate by forces impreffed, is a law of nature univerfally received by all philofophers. But from thence it follows that bodies which move in curve lines, and are therefore continually going off from the right lines that are tangents to theiri' orbits, are by forme conti-

Mr. Cotes's Preface.

continued force retained in thofe curvilinear paths. Since then the Planets move in curvilinear orbits there muft be fome force operating, by whofe repeated actions they are perpetually made to deflect from the tangents.

Now it is collected by mathematical reafoning, and evidently demonitrated, that all bodies that move in any curve line defcribed in a plane, and which, by a radius drawn to any point, whether quiefent, or any how moved, defrribe areas about that point proportional to the times, are urged by forces directed towards that point. This muft therefore be granted. Since then all aftronomers agree that the primary Planets deferibe about the Sun, and the fecondary about the primary, areas proportional to the times; it follows that the forces by which they are perpetually turned afide from the rectilinear tangents, and made to revolve in curvilinear orbits, are directed towards the bodies that are fituate in the centres of the orbits. This force may therefore not improperly be called centripetal in refpect of the revolving body, and in refpeet of the central body attractive; whatever caufe it may be imagined to arife from.

But befides, thefe things muft be alfo granted, as being mathematically demonitrated: If feveral bodies revolve with an equable motion in concentric circles, and the fquares of the periodic times are as the cubes of the diftances from the common centre; the centripetal forces will be reciprocally as the fquares of the diftances. Or, if bodies revolve in orbits that are very near to circles, and the apfides of the orbits reft; the centripetal forces of the revolving bodies will be reciprocally as the fquares of the diftapces. That both thefe cafes hold in all the Planets

Mr. Cotes's Preface.

Planets all aftronomers confent. Therefore the ceni tripetal forces of all the Planets are reciprocally as the fquares of the diftances from the centres of their orbits. If any fhould object, that the apfides of the Planets, and efpecially of the Moon, are not perfectly at reft; but are carried with a flow kind of motion in confequentia; one may give this anfwer, that though we fhould grant this very flow motion to arife from hence, that the proportion of the centripe:al force is a little different from the duplicate, yet that we are able to compute mathematically the quantity of that aberration, and find it perfectly infenfible. For the ratio of the Lunar centripetal force it felf, which muft be the moft irregular of them all, will be indeed a little greater than the duplicate, but will be near fixty times nearer to that than it is to the triplicate. But we may give a truer anfwer, by faying that this progreffion of the apfides arifes not from an aberration from the duplicate proportion, but from a quite different caufe, as is moft admirably fhewn in this philofophy. It is certain then that the centripetal forces with which the primary Planets tend to the Sun, and the fecondary to their primary, are accurately as the fquares of the diftances reciprocally.

From what has been hitherto faid, it is plain that the Planets are retained in their orbits by fome force parpetually ating upon them; it is plain that that force is always directed towards the centres of their obbits; it is plain that its efficacy is augmented with the nearnefs to the centre, and dimitnifhed with the fame; and that it is augmented in the lame proportion with which the fquare of the diftance is diminifhed, and diminifhed in the fame

Mr. Cotes's Preface.

proportion with which the fquare of the diftance is augmented. Let us now fee whether, by making a comparifon between the centripetal forces of the Planets, and the force of gravity, we may not by chance find them to be of the fame kind. Now they will be of the fame kind if we find on both fides the fame laws, and the fame affections. Let us then firft confider the centripetal force of the Monn which is neareft to us.

The rectilinear fpaces, which bodies let fall from reft defcribe in a given time at the very beginning of the motion, when the bodies are urged by any forces whatfoever, are proportional to the forces. This appears from mathematical reafoning. Therefore the centripetal force of the Moon revolving in its orbit is to the force of gravity at the furface of the Earth, as the fpace, which in a very fmall particle of time the Moon, deprived of all its circular force and defcending by its centripetal force rowards the Earth, would defcribe, is to the fpace which a heavy body would defcribe, when falling by the force of its gravity near to the Earth, in the fame given particle of time. The firft of there spaces is equal to the verfed fine of the are deferibed by the Moon in the fame time, becaule that verfed fine meafures the tranflation of the Moon from the tangent, produced by the centripetal force; and therefore may be computed, if the periodic time of the Moon and its diftance from the centre of the Earth are given. The laft fpace is found by experiments of pendulums, as Mr . Huygens has fhewn. Therefore by making a calculation we fhall find that the firft face is to the latter, or the centripetal force of the Moon revolving in its orbit will be to the force of gravity at the Superficies

Mr. Cotes's Preface.

of the Earth, as the fquare of the femi-diameter of the Earth to the fquare of the femi-diameter of the orbit. But by what was fhewn before the very fame ratio holds between the centripetal force of the Moon revolving in its orbit, and the centripetal force of the Moon near the furface of the Earth. Therefore the centripetal force near the furface of the Earth is equal to the force of gravity. Therefore thefe are not two different forces, but one and the fame; for if they were different, thefe forces united would caufe bodies to defcend to the Earth with twice the velocity they would fall with by the force of gravity alone. Therefore it is plain that the centripetal force, by which the Moon is perpetually, either impelled or attracted out of the tangent and retained in its orbit, is the very force of terreftrial gravity reaching up to the Moon. And it is very reafonable to believe that virtue thould extend it felf to vaft diftances, fince upon the tops of the higheft mountains we find no fenfible diminution of it. Therefore the Moon gravitates towards the Earth; but on the other hand, the Earth by a mutual action equally gravitates towards the Moon; which is alfo abundantly confirmed in this philofophy, where the Tides in the Sea and the Preceffion of the equinoxes are treated of; which arife from the action both of the Moon and of the Sun upon the Earth. Hence laftly, we difcover by what law the force of gravity decreafes at great diftances from the Earth. For fince gravity is no ways different from the Moon's centripetal force, and this is reciprocally proportional to the fquare of the diftance; it follows that it is in that very ratio that the force of gravity decreafes.

Mr. Cotes's Preface:

Let us now go on to the reft of the Planets: Becaufe the revolutions of the primary Planets about the Sun, and of the fecondary about Jupiter and Saturn, are phanomena of the fame kind with the revolution of the Moon about the Earth; and becaure it has been moreover demonftrated that the centripetal forces of the primary Planets are direted rowards the centre of the Sun, and thofe of the fecondary towards the centres of Jupiter and Saturn, in the fame manner as the centripetal force of the Moon is directed towards the cense of the Earth; and fince befides, all thefe forces are reciprocally as the fquares of the diftances from the centres, in the fame manner as the centripetal force of the Moon is as the fquare of the diffance from the Earth; we mult of courfe conclude, that the nature of all is the fame. Therefore as the Moon grevitates towards the Earth, and the Earth again towards the Moon ; fo alfo all the fecondary Planets will gravitate towards their primary, and the primary Planets again towards their fecondary; and fo all the primary towards the Sun; and the Sun agzin towards the primary.

Therefore the Sun graviates towards all the Planets, and all the Planets towards the Sun. For the fecondary Planets, while they accompany the primary, revolve the mean while with the primary about the Sun. Therefore by the fame argument, the Planers of borh kinds gravitate towards the Sun, and the Sun towards them. That the fecondary Planets gravitate towards the Sun is moreover abundantly clear from the inequalities of the Moon; 2 moft accurate theory of which laid open with a moft adimirable fagacity, we find explained in the third book of this work.

Mr. Cotes's Preface.

That the attractive virtue of the Sun is propagated on all fides to prodigious diftances, and is diffufed to every part of the wide face that furrounds it, is moft evidently flitwn by the motion of the Comets; which coming from places immenfely diftant from the Sun, approach very near to it ; and fomerimes fo near, that in their periheliz they almont touch its body. The theory cf thefe bodics was altogether unknown to aftronomers, till in our own times our excellent author moft happily difcovered it, and demonftrated the truth of it by moft cerrain obfervations. So that it is now apparent that the Comets move in canic fections having their foci in the Sun's centre, and by radij drawn to the Sun defcribe areas proportional to the times. But from thefe phxnomena it is manifeft, and mathematically demonftrated, that thofe forces, by which the Comers are retained in their orbits, re!pect the Sun, and are reciprocally proportional to the fquares of the diftances from its centre. Therefore the Comets gravitate towards the Sun; and therefore the attractive force of the Sun not only acts on the bodies of the Planets, placed at given diftiances and very nearly in the fame plane, but reaches alfo to the Comers in the molt different parts of the heavens, and at the moft different diftances. This therefore is the na'ture of gravirating bodies, to propagate their force at all diftarces to all other gravitating bodies. But from thence it follows that all the Planers and $\mathrm{Co}-$ mets attract each other murually, and gravitate murually towards each other; which is alfo confirm. ed by the perturbation of Jupiter and Saturn, obferved by aftronomers, which is caufed by the munual actions of thefe two Planets upon each other;

Mr. Cotes's Preface.

as alfo from that very flow motion of the apfides; above taken notice of, and which arifes from a lake caufe.

We have now proceeded fo far as to thew that it muft be acknowledged, that the Sun, and the Earth, and all the heavenly bodies attending the Sun, attrate each other mutually. Theretore all the leaft particles of matter in every one mult have their feveral attractive forces, whofe effect is as their quantity of matter; as was thewn above of the rerreftrial particles. At different diftances thefe forces will be allo in the duplicate ratio of the diftances reciprocally; for it is mathematically demonftrated, that particles attracting according to this law will compore globes attrading according to the fame law.

The foregoing conclufions are grounded on this axiom which is received by all philofophers ; named ly that effects of the fame kind; that is, whofe known properties are the fame, take their rife from the fame caufes and have the fame unknown properties a'fo. For who doubts, if gravity be the caufe of the defcent of a fone in Ewrope, bit that it is alfo the caufe of the fame defcent in Anerica? If there is a mutual gravitation between a ftone and the Earth in Europe, who will deny the fame to be mutual in America? If in Ewrope, the attractive force of a ftone and the Earth is compounded of the attradive forces of the parts; who will deny the like compofition in America? If in Eusoope, the attraction of the Earth be propagated to all kinds of bodies and to all diffances; why may it not as well be propagated in like manner in America? All philofophy is founded on this rule; for if that be taken away we can affirm nothing

N'\%. Cotes's Preface.

of univerfals. Tlie conflitution of particular things is known by obfervations and experiments; and when that is done, it is by this rule that we judge univerfally of the nature of fuch things in general.

Since then all bodies, whether upon Earth or in the Heavens, are heavy, fo far as we can make any experiments or obfervations concerning them; we muft ctrainly allow that gravity is found in all bodies univerially. And in like manner as we ought not to fuppofe that any bodies can be otherwife than extended, moveable or impenetrable; fo we ought not to conctive that any bodies can be otherwife than heavy. The extenfion, mobility and impenerrability of bodics become hnown to us only by experiments; and in the very fame manner their gravity becomes known to us. All bodies we can make any obfervations upon, are extended, moveable and impenctrable; and thence we conclude all bodies, and thofe we have tro obfervations concerning, to be extended and moveable and impenetrable. So all bodies we ean make obfervations on, we find to be heavy; and thence we conclude all bodies, and thofe we have no obfervations of, to be heavy alfo. If any one ftould fay that the bodies of the fixed Stars are not heavy becaufe their gravity is not yet obferved; they may fay for the fame reafon that they are neither extended, nor moveable nor impenetrable, becaufe thefe affections of the fixed Stars are not yet obferved. In thort, cither graviry muft have a place among the primary qualities of all bodies, or extcolion, mobility and impenetrability muft not. And if the nature of things is not rightly explained by the gravity of bodies, it will not be right-

Mr. Cotes's Preface.

rightly explained by their extenfion, mobility and impenetrability.

Some I know difapprove this conclufion, and mutter fomething about occult qualities. They continually are cavilling with us, that gravity is an occult property; and occult caufes are to be quite banifhed from philofophy. Bur to this the anfwer is eafy; that thofe are indeed occuls caufes whofe exiftence is occult; and imagined but not proved; but not thofe whofe teal exiftence is clearly demonftrated by obfervations. Therefore gravity can by no means be called an occult caufe of the celeftial motions; becaufe it is piain fiom the phrnomena that fuch a virtue does really exift. Thofe rather have recourfe to occult caufes; who fer imaginary vortices, of a matter entirely fictitious, and impreceptible by our fenfes, to ducet thole motions.

But Shail gravity be therefore called an occult caufe, and thrown out of philofophy, becaufe the caufe of gravity is occult and not yet difcovered? Thofe who affim this, nlould be careful not to fall into an abfurdicy that may overturn the founditioas of all philofophy. For caufes ufe to proceed in a continued chain from thofe that are more compounded to thofe that are move fimple; when we are arrived at the moft fimple caufe we can go no farther. Therefore no mechanical account or explanation of the molt fimple caufe is to be expected or given; for if it could be given, the caufe were not the molt fimple. Thefe moft fimple caufes will you then call orcult, and reject them? Then you mult reject thofe that immediately depend upon them, and thofe which depend upon thefe laft,

Mr. Cotes's Preface.

till philofophy is quite cleared and difencumbred of all caufes.

Some there are who fay that gravity is praternatural, and call it a perpetual miracle. Theiefore they would have it rejetted, becaufe praternatural saufes have no place in phyfics. It is hardly worth while to fpend time in anfwering this ridiculous objection which overturns all philofophy. For cither they will deny gravity to be in bodies; which cannot be faid; or elfe, they will therefore call it preternatural becaufe it is not produced by the other affettions of bodies, and therefore not by mechanical caufes. But certainly there are primary affections of bodies; and thefe, becaufe they are primary, have no dependance on the others. Let them confider whether all thefe are not in like manner praternatural, and in like manner to be rejected; and then what kind of philofophy we are like to have.

Some there are who dinlike this celeftial phyfics becaufe it contradiets the opinions of Des Cartes, and feems hardly to be reconciled with them. Let thefe enjoy their own opinion; but let them att fairly; and not deny the fame liberty to us which they demand for themfelves. Since the Novioniarz Philofophy appears true to us, let us have the liberty to embrace and retain it, and to follow caufes proved by phenomena, rather than caufs only imagined, and not yet proved. The bufinefs of true philofophy is to derive the natures of things from caufes truly exiffent ; and to enquire after thofe laws on which the Great Creanor actually chofe to found this moft beautiful Frame of the W'orld; not thofe by which he might have done the fame, had he fo pleafed. It is reafonable enough to fuppofe that from feveral caufes,

Mi. Cotes's Prevace.

caufes, fomewhat differing from each other, the fame effect may arite; but the true caufe will be that, from which it truly and actually does arife; the others have no place in true platolophy. The fame motion of the hour-hand in a clock may be occafinned either by a weight hung, or a fpring thut up within. But if a certain clock hould be really moved with a weight; we fhould laugh at a man that would fuppofe it moved by a fpring, and from that principle, fuddenly taken up without farther examination, hould g ge abour to explain the motion of the index; for certainly the way he ought to have taken fhouid have been, actually to lonk inro the inwald parts of the machine, that he might find the true principle of the propofed motion. The like judgment ought to be made of thofe philefophers, who will have the heavens to be filled with a moft fubtile matter, which is perpetually carried round in vortices. For if they couid explain the phanomena ever so ascurarely by their hyporhefes, we could nor yee fay that they have difcovered true philofophy and the un: caufes of the celeftial motions, unlefs they cou'd either demonftrate that thofe caufes do actually exiff, or at leaft, that no others do exilt. Therefore if it be made clear that the attraction of all bodies is a property actually exifting in rerum naturia; and if it be alfo thewn how the motions of the ceiceltial bodies may be folved by that property; it would be very impertinent for any one to objett, that thefe motions ought to be accounted for by vortices; even though we hould never fo much allow fuch an explication of thofe motions to be poffible. But we allow no fuch thing; for the phanopena can by no means be accounted for by vora 4

Mr. Cotestspeface.

tices; as our Author has abundantly proved from the cleareft reafuns. So that Men muft be flrangely fond of chimera's, who can fpend their time to idiy, as in patching up a ridiculous figment and fetting it off with new comments of their own.

If the bodies of the Planets and Comets are carried round the Sun in vortices; the bodies fo carried, and the parts of the vortices next furrounding them, mult be carned with the fame velocity and the fame direction, and have the fame denfity, and the fome vis mertia anfwering to the bulk of the matter. But it is certain, the Planers and Comets, when in the very fame parts of the Heavens, are carned with various velocities and varicus directions. Therefore it necefarily follows that thofe parts of the celeftial fluid, which are at the fame diftances from the Sun, mult revolve at the fame time with different velocities in different directions; for one kind of velocity and direction is required for the motion of the Planets, and another for that of the Comets. But fince this cannot be accounted for; we muft either fay that all the celeftial bodies are not carried about by vortices; or elfe that their motions are derived, not from one and the fame vortex, but from feveral diftinct ones, which fill and pervade the fpaces round about the Sun. .

But if feveral vortices are contained in the fame space, and are fuppofed to penetrate each other, and to revolve with different motions; then becaufe thefe motions mult agree with thofe of the bodies carried about by thim, which are perfeetly regular, and performed in conic fections which are fometimes very eccentric, and fometimes nearly circles; one may very reafonably ask, how it comes to pars that thefe vortices remain sptire, and have fuffered

Mr. Cotes's Preface.

no manner of perturbation in fo many ages from the actions of the confliting matter. Cer'ainly if thefe fietinour motions are more compourdid and more hard to be accounted for than the true motions of the Planets and Comets, it feems to no purpole to admit them into philofophy; fince every caule ought to be more fimple than its effect. Allowing men to indulge their own fancies, fuppofe any man Chould aff'm that the Planers and Comers are furrounded with armofplieres like our Earth:
 of vortices. Let him then affirm that thefe atmofpheres by their own nature move about the Sun and defcribe conic fections, which motion is much more eafily conceived than that of the vortices penetrating each other. Laflly, that the Planets and Comers are carried atout the Sun by thefe armofpheres of theirs; and then applaud his own Sagacity in difcovering the caufes of the celeftial motions. He that rej:cts this fable muft a!forejcet the orher; for two drops of water are not more like than this hypothefis of atmofpheres, and that of vortices.

Galike has fhewn, that when a fone projected moves in a parabola, its defixion into that curve from its rectilinear path is occafroned by the giavity of the fone towards the Earth, that is, by an occult qualiry. But now fome body, more cunning than he, may come to explain the caufe after this manner. He will fuppofe a ccitain fubrile matter, not difcernable by our fight, our rouch or any other of our fenfes, which fills the fpaces which are near and contiguous to the fuperficies of the Earth; and that this matter is carried with different directions, and various, and often contrary, motions, defcribing parabolic

Mr. Cótes's Preface.

parabolic curves. Then fee how eafily he may account for the deflexion of the fone above fpoken of. The ftone, fays he, floats in this fubtile fluid, and following its motion, can't chufe but defcribe the fame figure. But the fluid moves in parabolic curves; and therefore the ftone muft move in a pa'rabola of courfe. Would not the acutencis of this philofopher be thought very extraordinary, who could deduce the appearances of nature from mechanical caufes, matter and motion, fo clearly that the meaneft man may underftand it? Or indeed mould not we fmile to fee this new Galike taking fo much mathematical pains to introduce occult qualities into philofophy, from whence they have been fo happily excluded? But I am afhamed to dwell fo long upon trifles.

The fum of the matter is this; the number of the Comets is certainly very great; their motions are perfectly regular; and obferve the fame laws with thofe of the Planets. The orbits in which they move are conic fections, and thofe very eccentric. They move every way towards all parts of the Heavens, and pafs through the planetary regions with all poffible freedom, and their motion is often contrary to the order of the figns. Thefe phanomena are moft evidently confirmed by aftronomical obfervations, and cannot be accounted for by vortices. Nay indeed they are utterly irreconcileable with the vortices of the Planets. There can be no room for the motions of the Comets; unlefs the celeftial fpaces be entirely cleared of that fictitious matter.

For if the Planets are carried about the Sun in vortices; the parts of the vortices which immediately furround every Planet muft be of the fame denlity with the Planet, as was 他ewn above. There-

Mr.Cotes's Prefacer.

fore all the matter contiguous to the perimeter of che magnus orbis, muft be of the fame denfity as the Earth. But now that which lies berween the magnus orbis and the orb of Saturn muft have either an equal or greater denfity. For to make the conflitution of the vortex permanent, the parts of lefs denfity muft lie near the centre, and thofe of preater denfity muft go farther from ir. For fince the periodic times of the Planets are in the fefquiplicate ratio of their difances from the Sun, the periods of the parts of the vortices muft alfo preferve the fame ratio. Thence it will follow that the centrifugal forces of the parts of the vortex mult be reciprocally as the fquares of their diftances. Thofe parts therefore which are more remore from the centre endeavcur to rectde from it with lefs force; whence if their denfiry be deficient, they mult yield to the greater force with which the parts that lie nearer the centre endeavcur to alcend. Therefore the denfer parts will afcend; and thofe of lefs denfity will deficend; and there will be a mutual change of places, till ath the fluid matter in the whole vortex be fo adjufted and difpofed, that being recuaced to an equilibrium is paris become quiefcent. If two fluids of different denfity be contained in the fame veffet; it will certainly come to pals that the fluid of grearer denfity with fink the loweft ; and by a like reafoning it follows that the denfer parts of the vortex by their greacer centrifugal force will afcend to the higheft places. Therefore all that far greater part of the vorrex which lies without the Earth's orb, will have a denfity, and by confequence a vis inertie anfwering to the bulk of the matter, which cannot be kifs than the denfity and vis inertic of the Earth. Bur from hence

Mr. Co.tes's Preface.

hence will arife a mighty refiffance to the palfage of the Comets, and luch as can't but be very fenfible; not to fay, enough to put a ftop to, and abforb, their motions entirely. But now it appears from the perfectly regular motion of the Comers, that they fuffer no refiftance that is in the lealt fenfible; and therefore that they meet with no matter of any kind, that has any refifting force, or, by confe; u ence, any denfity or vis inerti.e. For the refiftance of mediums arifes, either from the inertia of the matter of the fluid, or from its want of lubricity. That which arifes from the want of lubricity is very fmall, and is fcarce obfervable in the fluids commonly known, unlefs they be very tenacious like oil and honey. The refiftance we find in air, water, quick-filver and the like fluids that are not tenacious, is almoft all of the firft kind; and cannot be diminifhed by a greater degree of fubtilty, if the denfity and uis inertie, to which this refiftance is proportional, remains; as is moft evidently demonftrated by our Author in his noble theory of refiffances in the fecond book.

Bodies in going on through a fluid communicate their motion to the ambient fluid by little and little, and by that communication lofe their own motion, and by lofing it are retarded. Therefore the retardation is proportional to the motion communicated; and the communicated motion, when the velocity of the moving body is given, is as the denfity of the fluid; and therefore the retardation or refiftance will be as the fame denfiry of the fluid; nor can it be taken away, unlefs the fluid coming about to the hinder parts of the body refore the motion loft. Now this cannot be done unlefs the impreffion of the fluid on the hinder

Mr. Cotes's Preface.

parts of the body be equal to the impreffion of the fore parts of the body on the fluid, that is unlefs the relative velocity with which the fluid purhes the body behind is equal to the velocity with which the body pufhes the fluid; that is, unlefs the abfolute velocity of the recurring fluid be twice as great as the abfolute velocity with which the fluid is driven forwards by the body; which is impoffible. Therefore the refiftance of fluids arifing from their vis inertic can by no means be taken away. So that we muft conclude that the celeftial fluid has no vis inerti.e, becaufe it has no refifting force; that it has no force to communicate motion with, becaufe it has no vis inertia; that it has no force to produce any change in one or more bodies, becaufe it has no force wherewith to communicate motion; that it has no manner of efficacy, becaufe it has no faculty wherewith to produce any change of any kind. Therefore certainly this hyporhefis may be juftly called ridiculous, and unworthy a philofopher; fince it is altogether without foundation, and does not in the leaft ferve to explain the nature of things. Thofe who would have the Heavens filled with a fluid matter, bur fuppofe it void of any vis inertia; do indeed in words deny a vacuum, but allow it in fact. For fince a fluid matter of that kind can no ways be diftinguifhed from empty fpace; the difpute is now about the names, and not the natures of things. If any are fo fond of matter, that they will by to means admit of a fpace void of body; let us confider, where they mult come ar laft.

For either they will fay, that this conftitution of a world every where full, was made fo by the will of God to this end, that the operations of

Nature

Mr. Cotes's Preface.

Nature might be affifted every where by a fubtile zther pervading and filling all things; which cannot be fand however, fince we have thewn from the phannmena of the Comets, that this ather is of no efficacy at all; or they will fay, that it besame fo by the fame will of God for fome unknown end; which oupht not to be faid, becaule for the fame reafon a different conftitution may be as well fuppoled; or laflly, they will not fay that it was caufed by the will of God, but by fome neceflity of its nature. Therefore they will at haft fink into the mire of that infamous herd; who dream that all things are governed by Fate, and not by Poovidence; and that matter exifts by the neceflity of its nature always and every where, being infinite and eternal. But fuppofing thefe things, it muft be alfo every where uniform; for variety of forms is entirely inconfiftent with neceffity. It muft be alfo unmoved; for if it be neceffarily moved in any determinate direction, with any determinate velocity, it will by a like neceffity be moved in a different direction with a different velocity; but it can never move in different dircCtions with different velocities; therefore it muft be unmoved. Without all doubt this World, fo diverfified with that variety of forms and motions we find in it, could arife from nothing but the perfectly free will of God directing and prefiding over all.

From this fountain it is that thofe laws, which we call the laws of Nature, have foowed; in which there appear many traces indeed of the moft wife contrivance, but not the leaft fhadow of neceffity. Thefe therefore we muft not feek from uncertain conjectures; but learn them from oblervations and experiments.

Mr. Cotes's Prefee.

periments. He who thinks to find the true prithciples of phyfics and the laws of natural things by the force alone of his own mind, and the internal light of his reafon; mult either fuppofe that the World exifts by neceflity, and by the fame neceffity follows the laws propofed; or if the order of Nature was eftablithed by the will of God, that himfelf, a miferable reptile, can tell what was fittelt to be done. All found and true philofophy is founded on the appearances of things; which if they draw us never fo much againft our wills, to fuch principles as moft clearly manifeft to us the moft excellent counfel and fupreme dominion of the Allwife and Almighty Being; thofe principles are not therefore to be laid afide, becaufe fome men may perbaps diflike them. They may call them, if they pleafe, miracles or occult qualities; but names malicioully given ought not to be a difadvantage to the things themfelves; unlefs they will fay at laft, that all philofophy ought to be founded in atheifm. Philofophy muft not be corrupted in complaifance to thefe men; for the order of things will not be changed.

Fair and equal judges will therefore give fentence in favour of this moft excellent method of philofophy, which is founded on experiments and obfervations. To this method it is hardly to be faid or imagined, what light, what fplendor, hath accrued from this admirable work of our illuftrious author; whofe happy and fublime genius, refolving the moft difficult problems, and reaching to difcoveries of which the mind of man was thought incapable before, is defervedly admired by all thofe who are fomewhat more than fuperficially verfed in shefe matters. The gates are now fer open; and by
Mr. C ót es's Prefacé.

Kis means we may fretly enter into the knowledge of the hidden fecrets and wonders of natural things: He has fo clearly laid open and fet before our eyes the mon beautiful frame of the Syftem of the World ; that if King Aphonfus were now alive, he would not complain' for want of the graces cither of fimplicity or of harmony in it. Therefore we may now more nearly behold the beauties of Nature, and entertain our felves with the delightful contemplation; and, which is the beft and moft valuable fruit of philotophy, be thence incited the more profoundly to reverence and adore the great Maker and Lord of all. He mutt be blind who from the moft wife and excellent contrivances of things cannot fee the infinite Wifdom and Goodnefs of their Almighty Creator, and he mult be mad and fenfelefs, who refufes to acknowledge them.

Mathematical PRINCIPLES

0 F
Natural Pbilofophy.

DEFINITIONS.

Def. I.

The Quantity of Matter is the meafure of the fame, arijing from its denfity and bulk con. junitly.
SNarde HUS air of a double denfity, in a double
 fpace, is quadruple in quantuty; in a triple fpace, fextuple in quantity. The fame thing is to be underftood of frow, and fine duft or powders, that are condenfed by compreffion or liquefation; and of all bodies that are by any caufes B what:

Definition II.

The Quantity of Motion is the meafure of the fame, arifing from the vilocity and quantity of matter conjunctly.

The motion of the who'e is the Sum of the mos tions of all the parts; and therefore in a body double in quantity, with equal velocity, the motion is doub.e; with twice the velocity, it is quadruple.

Definition III.

The Vis Infita, or Innate Force of Matter, is a poweer of refifting, by which every body, as much as in it lies, endeavours to perfevere in its prefint ftate, whether it be of reft, or of moving uniformly forward in aright line.
This force is ever proportional to the body whore force it is; and differs nothing from the inativity of the Mafs, but in our manner of conceiving it. A body. from the inactivity of matter, is not without difficulty

Book I. of Natural Philofophr: 3
difficu'ty put cut of its fate of reft or motion. Upa 1 on which account, this Vis infita, may, by a moff fignificant name, be called Vis Inertia, or Force of Inactivity. But a body exerts this force only, when another force imprefs'd upon it, endeavours to change iss condition ; and the exercife of this force may be confidered both as refiftance and impulf: It is refiftance in fo far as the body, for maintaining its prefent fate withfands the force impreffed; it is impu'fe, in fo far as the body, by not eafily giying way to the imprefs'd force of another, endeavours to change the flate of that other. Refiftance is u'ually afcrib'd to bodies at reft, and impulfe to thofe in motion : But motion and reft, as commonly conceived, are only relatively diftinguifhed; nor are thofe bodies always truly at reft, which commonly are taken to be fo.

Definition IV.

An imprefs'd force is an action exerted upon a body, in order to change its/fate, either of reft, or of moving uniformly forward in a reght line.
This force confifts in the attion only; and remains no longer in the body, when the action is over. For a body raintains every new flate it acquires, by its Vis Inertie only. Impreff'd forces are of different origines; as from percuffion, from preflure, from centripetal force.

B2 Defi:

Definition V :

A Centripetal force is that by which bodies are drawn or impelled, or any wiay tend, towards a point as to a centre.

Of this fort is Gravity by which bodies tend to the centre of the Earth; Magnetifm, by which iron tends to the loadfone; and that force, whatever it is, by which the Planets are perpetually drawn afide from the retilinear motions, which otherwife they wou'd purfue, and made to revolve in curvilinear orbits. A flone, whirled about in a fing, endeavours to recede from the hand that turns it; and by that endeavour, diftends the fling, and that with fo much the greater force, as it is revolv'd with the greater velocity ; and as foon as ever it is let go, flies away. That force which oppoles it felf to this endeavour, and by which the fling perpetually draws back the ftone towards the hand, and retains it in its orbit, becaule 'tis direted to the hand as the centre of the orbit,I call the Centripetal force. And the fame thing is to be underftood of all bodies, revolv'd in any orbits. They all endeavour to recede from the centres of their orbits; and were it not for the oppofition of a contrary force which reftrains them to, and detains them in their orbits, which I therefore call Centripetal, would fly off in right lines, with an uniform motion. A projetile, if it was not for the force of gravity, would not deviate towards the Earth, but would go off from it in a right line and that with an uniform motion, if the refiftance of the Air was taken away. 'Tis by its gravity that it is drawn afide perpetually from its rectilinear courfe, and made to deviate towards the Earth, more or lefs, accord-
ing to the force of its gravity, and the velocity of its motion. The lefs its gravity is, for the quantity of its master, or the greater the ve'ocity with which it is projected, the lefs will it deviate from a rettilinear courf, and the farther it will go. If a leaden ball projected from the top of a mountain by the force of gun-powder with a given velocity, and in a direction parallel to the horizon, is carried in a curve line to the diftance of two miles before it falls to the ground; the fame, if the refiftance of the Air was took away, with a double or decuple velocity, would fly twice or ten times as far. And by increafing the velocity, we may at pleafure increare the diftance to which it might be projeted, and diminifh the curvarure of the line, which it might defrribe, till at laft it fhould fall at the diftance of 10,30 , or 90 degres, or even might go quite round the whole Earth before it falls; or lafly, fo that it might never fall to the Earth, but go forwards into the Celeftial Spaces, and proceed in its mot:on in inguriuum. And after the fame manner, that a projectile, by the force of gravity, may be made to revolve in an orbit, and go round the who'e Earth, the Moon alfo, either by the force of gravity, if it is endued with gravity, or by any other force, that impells it towards the Earth, may be perpetually drawn afide towards the Earth, out of the rectilinear way, which by its innate force it would purfu:; and be made to r:volve in the orbit which it now defrribes: nor cou'd the Moon without fome fuch force, be retain'd in its orbit. If this force was too fmal', it would not fufficiently turn the Moon out of a retilinear courfe: if it was too great, it would turn it too much, and draw down the Moon from its orbit towards the Earth. It is neceffary, that the force be of a juft quantity, and it be.ongs to the Mathematicians to find the force, B $3 \cdots$ that

that may ferve exactly to retain a body in a given orbit, with a given velocity; and vice verfa, to determine the curvilinear way, into which a body projected from a given place, with a given velocity, may be made to deviate from its natural retailinear way, by means of a given force.

The quantity of any Centripetal Force may be confidered as of three kinds, Abfolute, Accelerative, and Motive.

Definition VI.
The absolute quantity of a centripetal force is the neisure of the fame, proportional to the efficacy of the caufe that propagates it from the centre, through the spaces round about.

Thus the magnetic force is greater in one load-fione and lefs in another, according to their fizes and ffrength.

Definition VII.

The accelerative quantity of a centripetal force is the meafure of the fame, propor. tional to the velocity which it generates in a given time.
Thus the force of the fame load-fone is greater at a lefs diftance, and lefs at a greater : alfo the force of gravity is grcater in valleys, lefs on tops of exceeding high mountains; and yet lefs (as fhall be hereafer Thewn) at greater diftances from the body of the

Earth ; but at equal diftances, it is the fame every where ; becaufe (taking away, or allowing for, the refiftance of the Air) it equa'ly accelerates all falling bodies, whether heavy or light, gieat or fmall.

Definition VIII.

The motive quantity of a centripetal force, is the meafure of the fame, proportional to the motion wibich it generates in a given time.
Thus the Weight is greater in a greater body, lefs in a lefs body; it is greater noar to the Earth, and lefs at remoter diffances. This fort of quantity is the centripetency, or propenfion of the whole body towards the centre, or as I may fay, its Weight; and it is ever known by the quantity of a force equal and contrary to it, that is juff fufficient to hinder the defcent of the body.

There quantities of Forces, we may for brevity's fake call by the names of Motive, Accee.crative and Abrolure forces; and for diftinftion fake confider them, with refpeet to the Bodies that tend to the centre ; to the Places of thofe bodies; and to the Centre of force towards which they tend : That is to fay, I refer the Motive force to the Body, as an endeavour and propenfity of the whole towards a centre, arifing from the propenfitics of the feveral parts taken together ; the Accelerative force to the Place of the body, as a cerrain power or energy diffured from the centre to all places around to move the bodies that are in them; and the Abfolute force to the Centre, as indued with fome caufe, without which thofe motive forces would not be propagated through the fpaces round about; whether that caufe is fome central body, (fuch as is the Load.ftone, in B 4
the centre of the force of Magnetifm, or the Earth in the centre of the gravitating force) or any thing elfe that does not yet appear. For I here defign only to give a Mathematical notion of thofe forces, without confidering their Phyfical caufes and feats.

Wherefore the Accelerative force will fland in the fame relation to the Motive, as celerity does to motion. For the quantity of motion arifes from the celerity, dratin into the quantity of matter; and the motive force arifes from the accelerative force drawn into the fame quantity of matter. For the fum of the aetions of the Accelerative force, upon the feveral particles of the body, is the Motive force of the whole. Hence it is, that near the furface of the Earth, where the accelerative gravity, or force productive of gravity in all bodies is the fame, the motive gravity or the Weight is as the Body: but if we fhould afcend to higher regions, where the accelerative gravity is lefs, the Weight would be likewife diminifhed, and would always be as the product of the Body, by the Accelerative gravity. So in thofe regions, wherethe accelerative gravity is diminihihed into one half, the Weight of a body two or three times lefs, will be four or fix times lefs.

I likewife call Attrattions and Impulfes, in the fame fenfe, Accelerative, and Motive; and ufe the words Attration, Impulfe or Propenfity of any fort towards a centre, promifcuoully, and indifferently, one for another; confidering thofe forces not Phyfically but Mathematically: Wherefore, the reader is not to imagine, that by thofe words, I any where take upon me to define the kind, or the manner of any Action, the caufes or the phyfical rea:on thereof, or that I attribute Forces, in a true and Phyfical fenfe, to certain centres (which are only Mathematical points); when

Scholium.

- Hitherto I have laid down the definitions of fuch words as are lef known, and explained the fenfe in which I would have them to be underftood in the following difcourfe. I do not define Time, Space, Place and Motion, as being weil known to all. Only I muft obferve, that the vulgar conceive thofe quantities under no other notionsbut from the relation they bear to fenfible objects. And thence arife certain prijudices, for the removing of which, it will be convenient to diftinguifh them into Abfolute and Relative, True and Apparent, Mathematical and Common.
I. Abfolute, True, and Mathematical Time, of it felf, and from its own nature flows equably withour regard to any thing external, and by another name is called Duration: Relative, Apparent, and Common Time is fome renfible and external (whether accurate or unequable) meafure of Duration by the means of motion, which is commonly ufed inftead of True time ; fuch as an Hour, a Day, a Month, a Year.

II Abfolute Space, in its own nature, without regard to any thing external, remains always fimilar and immoveable. Relative Space is fome moveable dimerfion or meafure of the abfolute fpaces; which our fenfes determine, by its pofition to bodies; and which is vulgarly taken for immoveable fpace; Such is the dimenfion of a fubterraneous, an aereal, or celeftial fpace, determind by its pofition in refpect of the Earth. Abfolute and Relative fpace, are the fame in figure and magnitude; but they do not remain always numerically the fame. For if the Earth, for inftance, moves;
a Pace of our Air, which relatively and in refpet of the Earth, remains always the fame, will at one time be one part of the abfolute fpace into which the Air paffes; at another time it will be another part of the fame, and fo, abfolutely underftood, it will be perpetually mutable.
III. Place is a part of face which a body takes up, and, is according to the fpace, either abfolute or relative. I fay, a Part of Space; not the fituation, nor the external furface of the body. For the places of equal Solids, are always equal; but their fuperficies, by reafon of their diffimilar figures, are often unequal. Pofitions properly have no quantity, nor are they fo much the places themfelves, as the properties of places. The motion of the whole is the fame thing with the fum of the motions of the parts, that is, the tran flation of the whole, out of its place, is the fame thing with the fum of the tranflations of the parts out of their places; and therefore the Place of the whole, is the fame thing with the Sum of the places of the parts, and for that reafon, it is internal, and in the whole body.
IV. Abfolute motion, is the tranflation of a body from one abfolute place into another ; and Relative motion, the tranflation from one relative place into another. Thus in a Ship under fail, the relative pace of a body is that part of the Ship, which the Body poffeffes; or that part of its cavity which the body fills, and which therefore moves togerher with the Ship: And Relative reft, is the continuance of the Body in the fame part of the Ship, or of its cavity. But Real, abfolute reft, is the continuance of the Body in the fame part of that Immoveable fpace, in which the Ship it felf, its cavity, and all that it contains, is moved. Wherefore, if the Earth is really at reft, the Body, which
which reatively refts in the Ship, will really and abfolutely move with the fame velocity which the Ship has on the Earth. But if the Earth alfo moves, the true and abfolute motion of the body will arife, partly from the true motion of the Earth, in immoveable fpace ; partly from the relative motion of the Ship on the Earth: and if the body moves alfo relatively in the Ship; its true motion will arife, partly from the true motion of the Earth, in immoveable fpace, and partly from the relative motions as well of the Ship on the Earth, as of the Body in the Ship; and from thefe relative motions, will arife the relative motion of the Body on the Earth. As if that part of the Earth where the Ship is, was truly mov'd toward the Eaft, with a velocity of 10010 parts; while the Ship it felf with a frefh gale, and full fai's, is carry d towards the Weft, with a velocity exprefs'd by 10 of thofe parts; but a Sailor walks in the Ship towards the Eaft, with II part of the faid velocity : then the Sailor will be moved truly and abfolutely in immoveable fpace towards the Eaft with a velocity of 10001 parts, and relatively on the Earth towards the Weft, witha velocity of 9 of thofe parts.

Abfolute time, in Aftronomy, is diftinguifhd from Relative, by the Equation or correction of the vulgar time. For the natural days are truly unequal, though they are commonly confider'd as equal, and ufed for a meafure of time : Aftronomers correct this inequality for their more accurate deducing of the celeftial motions It may be, that there is no fuch thing as an equable motion, whereby time may be accurately meafured. All motions may be accelerated and retarded, but the True, or equable progrefs, of Abrolure time is liable to no change. The duration or perfeverance of the exiftence of things remains the fame, whether the mo-

12

tions are fwift or flow, or none at all: and therefore in ought to be diftinguifh'd from what are only fenfible meafures thereof; and out of which we colleet it, by means of the Aftronomical equation. The neceffity of which Equation, for determining the Times of a phenomenon, is evinc'd as well from the experiments of the pendulum clock, as by eclippes of the Satellites of $\mathcal{F u}$ piter.

As the order of the parts of Time is immutable, fo alfo is the order of the parts of Space. Suppofe thofe parts to be mov'd out of their places, and they will be moved (if the expreffion may be allowed) out of themfleses. For times and fpaces are, as it were, the Places as well of themfelves as of all orher things. All things are placed in Time as to order of Succeffion; and in Space as to order of Situation. It is from their effence or nature that they are Places; and that the primary places of things fhould be moveable, is abfurd. Thefe are therefore the ab.olute places; and tran fations out of thofe places, arc the only Abfolute Motions.

But becaufe the parts of Space cannot be feen, or diftinguifhed from one another by our Senfes, therefore in their flead we ufe fenfible meafures of them. For from the pofitions and diftances of things from any body confider'd as immoveable, we define all places: and then with refpect to fuch places, we eftimate all motions, confidering bodies as transfer'd from fome of thofe places into others. And fo inflead of abrolute places and motions, we ufe relative ones; and that without any inconvenience in common affairs: but in Philofophical difquifitions, we ought to abftract from our fenfes, and confider things themfelves, diftinet from what are only fenfible meafures of them. For it may be that there is no body reaily at reft, to which the places and motions of others may be referr'd.

Book I. of Natural Pbilofiphy. is
But we may diftinguih Reft and Motion, abolute and relative, one from the other by their Properies, Caufes and Effeds. It is a property of Reff, that bodies really at reft do reft in relpet of one another. And therefore as it is poffible, that in the remote regions of the fixed Stars, or perhaps far beyond them, there may be fome body abfolutely at reft; but impolfible to know from the pofition of bodies to one another in our regions, whether any of thefe do keep the fame pofition to that remore body; it follows that abfolute reft cannot be determined from the pofition of bodies in our regions.

It is a property of motion, that the parts, which retain given pofitions to their wholes, do partake of the motions of thofe wholes. For all the parts of revolving bodies endeavour to recede from the axe of motion; and the imperus of bodies moving forwards, ariles from the joint impetus of all the parts. Therefore, if furrounding bodies are mov'd, thofe that are relatively at reft within them, will partake of their motion. Upon which account, the true and abfolute motion of a body cannot be determin'd by the tranflation of it from thofe which only feem to reft : For the external bodies ought not only to appear at reft, but to be really at reft. For otherwife, all included bodies, befide their tranflation from near the furrounding ones, partake likewife of their true motions; and tho' that tranflation was not made they would not be rea'ly at reft, but only feem to be fo. For the furrounding bodies fland in the like relation to the furrounded, as the exteriour part of a whole doss to the interiour, or as the fhell docs to the kernel; but, if the fhell moves, the kernel will alfo move, as being part of the whole, without any removal from near the fhell.

A property

14 Matbematical Trinciples Book 1.

A property near a kin to the preceding, is this, that if a place is mov'd, whatever is placed therein moves along with it; and therefore a body, which is mov'd from a place in motion, partakes alfo of the motion of its place. Upon which account all motions from places in motion, are no other than parts of entire and abfolute motions; and every entire motion is compofed out of the motion of the body out of its firft place, and the motion of this place out of its place, and foon; until we come to fome immoveable place, as in the before mention'd example of the Sailor. Wherefore entire and abfolute motions can be no orherwife determin'd than by immoveable places; and for that reafon I did before refer thofe abfolute motions to immoveable places, but relative ones to moveable places. Now no other places are immoveable, but thofe that, from infinity to infinity, do all retain the fame given pofitions one to another; and upon this account, muft ever remain unmov'd; and do thereby conftitute, what I call, immoveable fpace.

The Caufes by which true and relative motions are diftinguifhed, one from the other, are the forces imprefs'd upon bodies to generate motion. True motion is neither generated nor alter'd, but by fome force imprefs'd upon the body moved: but relative motion may be generated or alter'd without any force imprefs'd upon the body. For it is fufficient only to imprefs fome force on other bodies with which the former is compar'd, that by their giving way, that relation may be chang'd, in which the relative reft or motion of this other body did confiff. Again, True motion fuffers always fome change from any force imprefs'dupon the moving body; but Relative motion does not neceffarily undergo any change, by fuch forces. For if the fame forces are likewife imprefs'd on thofe other bodies,
bodies, with which the comparifon is made, that the relative pofition may be preferved, then that condition will be preferv'd, in which the relative motion confifts. And therefore, any relative motion may be changed, when the true motion remains una'ter'd, and the relative may be preferv'd, when the true fuffers fome chatge. Upon which accounts, true motion does by no means confift in fuch relations.

The Effets which diftinguifh abfolute from relative motion are, the forces of receding from the axe of circular motion. For there are no fuch forces in a circular motion purely relative, but in a true and abrolute circular motion, they are greater or lefs, according to the quantity of the motion. If a veffel, hung by a long cord, is fo often turned about that the cord is ftrongly twifted, then fill'd with water, and held at reft together with the water; after by the fudden action of another force, it is whirl'd about the contrary way, and while the cord is untwifting it felf, the veffel continues for fome time in this motion; the furface of the water will at firft be plain, as before the veffel began to move: but the veffel, by gradually communicating its motion to the water, will make it begin fenfibly to revolve, and recede by little and little from the middle, and arcend to the fides of the veffel, forming it felf into a concave figure, (as I have experienced) and the fwiffer the motion becomes, the higher will the water rife, till at laft, performing its revolurions in the fame times with the veffel, it becomes relatively at reft in it. This afcent of the water thews its endeavour to recede from the axe of its motion; and the true and abfolute circular motion of the water, which is here directly contrary to the relative, difcovers it felf, end may be meafured by this endeavour. Ac firft, when the relative motion of the water in the veffel was greateat
greareft it produc'd no endeavour to recede from the axe : the water hew'd no tendency to the circumference, nor any afcent towards the fides of the veffe!, but remain'd of a plain furface, and therefore its True circular motion had not yet begun. But afterwards, when the relative motion of the water had decreas' d, the afcent thereof towards the fides of the veffel, prov'd its endeavour to recede from the axe ; and this endeavour thew'd the real circular motion of the water perpetually increaffng, till it had acquir'd its greateft quancity, when the water refted relatively in the veffel. And therefore this endeavour does not depend upon any tranlation of the water in refpect of the ambient bodies, nor can true circular motion be defin'd by fuch trannations. There is only one real circular motion of any one revolving body, correfponding to only one power of endeavouring to recede from its axe of motion, as its proper and adequate effet : but relative motions in one and the fame body are innumerable, according to the various relations it bears to external bodies. and like other relations, are altogether deftitute of any real effect, any otherwife than they may perhaps participate of that one only true motion. And therefore in their fyftem who fuppofe that our heavens, revolving below the fphere of the fixt Stars, carry the Planets along with them; the feveral parts of thofe heavens, and the Planets, which are indeed relatively at reft in their heavens, do yet really move. For they change their pofition one to another (which never happens to bodies truly at reft) and being carried together with their heavens, participate of their motions, and as parts of revolving wholes, endeavour to recede from the axe of their motions.
Wherefore relative quantities, are not the quantities themfelves, whofe names they bear, but thofe fenfible meafures

Book I. of Natural Prilooophy.
meafures of them (either accurate or inaccurate) which are commonly ufed inftead of the meafur'd quantities them'elves. And if the meaning of words is to be determin'd by their ufe ; then by the names Time, Space, Place and Motion, their meafures are properly to be underfood; and the expreffion will be unufual, and purely Mathematical, if the meafured quantities themfelves are meanr. Upon which account, they do frain the Sacred Writings, who there interpret thofe words for the meafur'd quantities. Nor do thofe
 lefs defile the purity of Mathematical and Philofophical truths, who confound real quantities themfelves with their relations and vulgar meafures.

It is indeed a matter of great difficulty to difcover, and effectualy to diftinguifh, the True motions of particular bodies from the Apparent: becaufe the parts of that immoveable fpace in which thofe motions are perform'd, do by no means come under the obfervation of our fenfes. Yet the thing is not altogether defperate; for we have fome arguments to guide us, partly from the apparent motions, which are the differences of the true motions; partly from the forces, which are the caufes and effects of the true motions. For inftance, if two globes kept at a given diftance one from the other, by means of a cord that conne日ts them, were revolv'd about their common centre of gravity; we might, from the tenfion of the cord, difcover the endeavour of the globes to recede from the axe of their motion, and from thence we might compure the quantity of their circular motions. And then if any equal forces fhould be imprefs'd at once on the alternate faces of the globes to augment or diminifa their circular motions; from the encreafe or decreafe of the tenfion of the cord, we might infer the increment or decrement of their motions; ar.d thence would be found, on what faces
thofe forces ought to be imprefs'd, that the motions of the globes might be moft augmented, that is, we might difcover their hindermoft faces, or thofe which, in the circular motion, do follow. But the faces which follow being known, and confequently, the oppofite ones that precede, we Mould likewife know the determination of their motions. And thus we might find both the quantity and the determination of this circular motion, ev'n in an immenfe vacuum, where there was nothing external or fenfible with which the globes could be compar'd. But now if in that fpace fome remote bodies were plac'd that kept always a given pofition one to another, as the Fixt Stars do in our regions; we cou'd not indeed determine from the relative cranflation of the globes among thofe bodies, whether the motion did belong to the globes or to the bodies. But if we obferv'd the cord, and found that its tenfion was that very tenfion which the motions of the globes requir'd, we might conclude the motion to be in the ginbes, and the bodies to be at reft; and then, laftly, from the tranllation of the globes among the bodies, we Chould find the determination of their motions. But how we are to collect the true motions from their caures, effcats, and apparent differences; and vice verfa, how from the motions, either true or apparent, we may come to the knowledge of their caufes and effects, thall be explain'd more at large in the following Tract. For to this end it was that I compos'd it.

Axioms or Laws of Motion.

Law I.

Every body perfeveres in its flate of reft, or of uniform motion in a right line, unlefs it is compelled to change that fiate by furces imprefsd thereon.

PRojectiles perfevere in their motions, fo far as they are not rearded by the reffiftance of the air, or impell'd downwards by the force of gravity. A top, whofe parts by their cohefion are perperually drawn afide from reetilinear motions, does not ceafe its rotation, otherwife than as it is retarded by the air. The greater bodies of the Planets and Comets, meeting with lefs refiftance in more free faces, preferve their motions both progreffive and circular for a much longer time.

Law II.

The alteration of motion is ever proportional to the motive force imprefs'd; and is made in the direction of the right line in which that force is imprefs'd.

If any force generates a motion, a double force will generate double the motion, a triple force triple the motion, whether that force be imprefs'd altogether and

$$
\text { C } 2
$$

at once, or gradually and fucceffively. And this motion (being always directed the lame way with the generating lorce) if the body moved before, is added to or fubduted from the tormer motion, according as they direct'y conlp re with or are directly contrary to each other ; or obliquely joyned, when they are oblique, fo as to produce a new motion compounded from the determination of both.

L a w III.

To every AElion there is alexays oppofed an equal Reaction: or the mutual actions of tuo bodies upon each other are always equal, and directed to contrary parts.

Whatever draws or preffes another is as much drawn or preffed by that other. If you prefs a ftone with your finger, the finger is alfo preffed by the ftone. If a hoife draws a ftone tyed to a rope, the horfe (if I may fo fay) will be equally drawn back towards the ftone : For the diftended rope, by the fame endeavour to relax or unbend it felf, will draw the horfe as much towards the flone, as it does the fone towards the horfe, and will obftrut the progrefs of the one as much as it advances that of the other. If a body impinge upon amother, and by its force change the motion of the other ; that body alfo (becaure of the equality of the mutual preffure) will undergo an equal change, in its own motion, towards the contrary part. The changes made by there attions are equal, not in the velocities, but in the motions of bodies ; that is to fay, if the bodies are not hinder'd by any other impediments. For becaufe the motions

Laws. of Natural Philoropk.
are equally changed, the changes of the velocities made towards contrary parts, are reciprocally proportional to the bodies. This Law takes place alfo in Attractions, as will be proved in the next Scholium.
Corollary I.

A body by two forces conjoined will d fribe the diagonal of a parall logram, in the fame time that it would difiribe the fides, by thofe forces apart. (Pl. i. Fig. I.)
If a body in a given time, by the force M imprefs'd apart in the place A, thould with an uniform motion be carried from A to B; and by the force N imprefs'd apart in the fame place, fhould be carried from A to C : compleat the paral elogram $A B C D$, and by both forces atting together, it will in the fame time be carried in the diagonal from A to D. For fince the force N acts in the direction of the line $A C$, parallel to $B D$, this force (by the fecond law) will not at all alter the velocity gencrared by the other fo: ce M, by which the body is carried towards the line $B D$. The body therefore will arrive at the line $B D$ in the fame time, whether the force N be imprefi'd or not; and therefore at the end of that time, it will be found fomewhere in the line BD. By the fame argument, at the end of the fame time it will be found fomewhere in the line CD. Therefore it will be found in the point D, where both lines meet. But it will move in a right line from A to D by Law 1 .

22 Matkematical Frinciples Book I.

Coroleary II.

And bence is explained the compofition of any one dircte force A D, out of any two oblique forces A B and BD ; and, on the contrary the refolution of any one derect force AD into two obligue forces AB and BD : which compofition and refolution are abundantly confirmed from Mecbanics. (Fig. 2.)

As if the unequal Radii $O M$ and $O N$ drawn from the centre O of any wheel, ghould fuftain the weights A and P, by the cords $M A$ and $N P$; and the forces of thote weights to move the wheel were required. Through the centere O draw the right line $K O L$, meeting the cords perpendicularly in K and L; and from the centre O, with $O L$ the greatcr of the diftances $O K$ and $O L$, defcribe a circle, meeting the cord $M-A$ in D : and drawing $O D$, make $A C$ parallel and $D C$ perpendicu'ar thereto. Now, it being indifferent whethcr the points K, L, D, of the cords be fixed to the plane of the wheel or not, the weights will have the fame effett whether they are surpended from the points K and L, or from D and 7. Let the whole force of the weight A be reprefented by the Line $A D$, and let it be refolved into the forces $A C$ and $C D$; of which the force $A C$, drawing the radius $O D$ direetly from the centre, will have no effect to move the whet: but the other force $D C$, drawing the radius $D O$ perpendicularly, will have the fame effect as if it drew perpendicularly the radius $O L$ cqual to $O D$; that is, it will have the fame

Iaws. of Natural Pbilofophy.
fime effeet as the weight P, if that weight is to the weight A, as the force $D C$ is to the force $D A$; that is (becaufe of the fimilar triangles $A D C, D O K$, as $O K$ to $O D$ or $O L$. Therefore the weights A and P, which are reciprocally as the radii $O K$ and $O L$ that lye in the fame right line, will be equipollent, and fo remain in equilibrio: which is the well known property of the Ballance, the Lever, and the Whecl. If either weight is greater than in this ratio, its force to move the wheel will be fo much the greater.
If the weight p, equal to the weight P, is partly fufpended by the cord N_{P}, partly fuftained by the oblique plane $p G$; draw $p H, N H$, the former perpendicular to the horizon, the later to the plane $P G$; and if the force of the weight p tending downwards is reprefented by the line $p H$, it may be refolved into the forces $p N, H N$. If there was any plane perpendicular to the cord $p N$, cutting the other plane $p G$ in a line parallel to the horizon ; and the weight p was fupported only by thofe planes $p Q, P G$; it would prefs tho'e planes perpendicularly with the forces $p N, H N$; to wit, the plane $p Q$ with the force $p N$, and the plane $p G$ with the force $H^{\prime} N$. And therefore if the plane $p Q$ was taken away, fo that the weight might ftretch the cord, becaufe the cord, now fuftaining the weight, fupplies the place of the plane that was removed, it will be ftrained by the fame force $p N$ which prefs'd upon the plane before. Therefore the tenfion of this oblique cord $p N$ will be to that of the other perpendicular cord $P N$ as $p N$ to $p H$. And therefore if the weight p is to the weight \mathcal{A} in a ratio compounded of the reciprocal ratio of the leaft diftances of the cords $p N, A M$, from the centre of the wheel, C 4
and
and of the direct ratio of $p H$ to $p N$; the weights will have the fame effect towards moving the wheel, and will therefore fultain each other, as any one may find by experiment.

But the weight p preffing upon thofe two oblique planes, may be confider'd as a wedge between the two internal furfaces of a body fplit by it ; and hence the forces of the Wedge and the Mal'et may be determin'd ; for becaufe the force with which the weight p preffes the plane $p Q$, is to the force with which the fame, whether by its own gravity, or by the blow of a mallet, is impelled in the direction of the line $p \boldsymbol{H}$ towards both the planes, as $p N$ to $p \boldsymbol{H}$; and to the force with which it preffes the other plane $p G$, as $p N$ to $N H$. And thus the force of the Screw may be deduced from a like refolution of forces; it being no other than a Wedge impelled with the force of a Lever. Therefore the ufe of this Corollary fpreads far and wide, and by that diffufive extent the truth thereof is farther confirmed. For on what has been faid depends the whole doctrine of Mechanics variounly demonftrated by different authors. For from hence are eafily deduced the forces of Machines, which are compounded of Wheels, Pulleys, Leavers, Cords and Weights, afcending directly or obliquely, and other Mechanical Powers; as alfo the force of the Tendons to move the Bones of Animals.

Corol-

Laws. of Natural Pbilofoply. \quad :s

Corollary III.

The Quantity of motion, which is collected by taking the fium of the motions directed towards the fame parts, and the difference of thofe that are directed to contrary parts, fuffers no change fiom the sction of bodies among thimfelves.

For Attion and its oppofite Re-action are equal, by Law 3, and therefore, by Law 2, they produce in the motions equal changes towards oppolite parts. Therefore if the motions are diretted towards the fame parts, whatever is added to the motion of the preceding body will be lubducted from the motion of that which follows ; fo thar the fum will be the fame as before. If the bodies meet, with contrary motions, there will be an equal deduction from the motions of both; and therefore the difference of the motions directed towards oppofite parts will remain the fame.

Thus if a fpharical body A with two parts of velocity is triple of a fphrical body B which follows in the fame right line with ten parts of velocity; the motion of A will be to that of B, as σ to 10 . Suppofe then their motions to be of σ parts and of 10 parts, and the fum will be 16 parts. Therefore upon the meeting of the bodies, if A acquire 3,4 or s parts of motion, B will lofe as many; and therefore after reflexion A will proceed with 9 , 10 or 11 parts, and B with 7,6 or ς parts; the fum remaining atways of 16 parts as before. If the body A acquire 9 , 10, 11 or 12 parts of motion, and therefore after meeting proceed with $15,16,17$ or 18 parts; the body B_{2} lofing
B, lofing fo many parts as A has got, will either proceed with one part, having loft 9 ; or ftop and remain at reft, as having loft its whole progreffive motion of 10 parts; or it will go back with one part, having not only loft its whole motion, but (if I may fo fay) one part more ; or it will go back with 2 parts, becaufe a progreffive motion of 12 parts is took off. And fo the Sums of the confpiring motions $15+1$, or $16+0$, and the Differefices of the contrary motions 17-1 and $18-2$ will always be equal to 16 parts, as they were before the meeting and reflexion of the bodies. But, the motions being known with which the bodies proceed after reflexion, the velocity of either will be alfo known, by taking the velocity after to the velocity before reflexion, as the motion after is to the motion before. As in the laft cafe, where the motion of the body A was of 6 parts before reflexion and of 18 parts after, and the velocity was of 2 parts before reflexion; the velocity thereof after reflexion will be found to be of 6 parts, by faying, asthe σ parts of motion before to 18 parts after, fo are 2 parts of velocity before reflexion to σ parts after.

But if the bodies are either not fphærical, or moving in different right lines impinge obliquely one upon the other, and their motions after reftexion are required : in thofe cafes we are firft to determine the pofition of the plane that touches the concurring bodies in the point of concourfe; then the motion of each body (by Corol. 2.) is to be refolved into two, one perpendicular to that plane, and the other parallel to it. This done, becaufe the bodies act upon each other in the direction of a line parpendicular to this plane, the parallel motions are to be retained the fame after reflexion as before; and to the perpendicular motions we are to affign equal changes towards the contrary parts; in fuch

Laws. of Natural Pbilooophy.
fuch manner that the fum of the confpiring, and the difference of the contrary motions, may remain the fame as before. From fuch kind of reflexions alfo fometimes arife the circular motions of bodies about their own centres. But thefe are cafes which I don't confider in what follows; and it would be too tedious to demonfrrate every particular that relates to this fubject.
Corollary IV.

The common centre of gravity of two or more bodies, does not alter its ftate of motion or reft by the actions of the bodies among themfelves; and therefore the common centre of gravity of all bodies acting upon each other (excluding outzsard actions and impediments) is either at reft, or moves uniformly in a right line.

For if two points proceed with an uniform motion in right lines, and their diftance be divided in a given ratio, the dividing point will be cither at reft, or proceed uniformly in a right line. This is demonftrated hereafter in Lem. 23. and its Corol. when the points are moved in the fame plane; and by a like way of arguing, it may be demonftrated when the points are not moved in the fame plane. Therefore if any number of bodies move uniformly in right lines, the common centre of gravity of any two of them is either at reft, or proceeds uniformly in a right line; becaure the line which connets the centres of thofe two bodies fo moving is divided at that common centre in a given ratio. In like manner the common centre of thofe
two and that of a third body will be either at reft or moving uniformly in a right line; becaufe at that centre, the diftance between the common centre of the two bodies, and the centre of this laft, is divided in a given ratio. In like manner the common centre of thefe three, and of a fourth body, is either at reft, or moves uniformly in a right line; becaufe the d:fance between the common centre of the three bodies, and the centre of the fourth is there allo divided in a given ratio, and foo on in infinitum. Therefore in a fy ftem of bodies, where there is neither any mutual attion among themfelves, nor any foreign force imprefs'd upon them from without, and which confequently move uniformly in right lines, the common cencre of gravity of them all is either at reft, or moves uniformly forwards in a right line.

Moreover, in a fyftem of two bodies mutually ating upon each other, fince the diffances between their centres and the common centre of gravity of both, are reciprocally as the bodies ; the relative motions of thofe bodies, whether of approaching to or of receding from that centre, will be equal among themfelves. Therefore fince the changes which happen to motions are equal and directed to contrary parts, the common centre of thofe bodies, by their mutual action between themfelves, is neither promoted nor retarded, nor fuffers any change as to its flate of motion or reft. But in a fy ftem of feveral bodies, becaufe the common centre of gravity of any two acting mutually upon each other fuffers no change in its flate by that action ; and much lefs the common centre of graviry of the others with which that action does not intervene; but the diftance between thofe two centres is divided by the common centre of gravity of all the bodies into parts reciprocally proportional to the total fums of thofe bodies
whofe

Laws. of Natural Pbilofophy.
whofe centres they are; and therefore while thofe two centres retain their ftate of motion or reft, the common centre of all does alfo retain its ftate : It is manifeft, that the common centre of all never fuffers any change in the ftate of its motion or reft from the actions of any two bodies between themfelves. Butin fach a fyftem all the actions of the bodies among themfelves, either happen between two bodies, or are compofed of actions interchanged between fome two bodies; and therefore they do never produce any alteration in the common centre of all as to its ftate of motion or reft. Wherefore fince that centre when the bodies do not act mutually one upon another, either is at reft or moves uniformly forward in fome right line; it will, notwithftanding the mutual actions of the bodies among themfelves, always perfevere in its ftate, either of reft, or of proceeding uniformly in a right line, unlefs it is forc'd out of this flate by the action of fome power imprefs'd from without upon the whole fyftem. And therefore the fame law takes place in 2 fyftem, confifting of many bodies, as in one fingle body, with regard to their perfevering in their ftate of motion or of reft. For the progreffive motion whether of one fingle body or of a whole fyftem of bodies, is always to be eftimated, from the motion of the centre of gravity.

Corol.

Corollary V.

The motions of bodies included in a given Space are the Jame among themselves, whether that fpace is at reft, or moves uniformly forciards in a right line without any circular motion.

For the differences of the motions tending towards the fame parts, and the fums of thofe that tend towards contrary parts, are at firft (by fuppofition) in both cafes the lame; and it is from thofe fums and differences that the collifions and impulfes do arife with which the bodies mutually impinge one upon another. Wherefore (by Law 2.) the effeets of thofe collifions will be equal in both cafes; and therefore the mutual motions of the bodies among themfelves in the one care will remain equal to the mutual motions of the bodies among themfelves in the other. A clear proof of which we have from the experiment of a hip: where all motions happen after the fame manner, whether the hip is at reft, or is carried uniformly forwards in a right line.

Coroleary VI.

If bodies, any how moved among themfelves are urged in the direction of parallel lines by equal accelerative forces; they will all continue to move amony themfelves, after the fame manner as if they bad been urged by no fuch forces.

For thefe forces acting equally (with refpect to the quantities of the bodies to be moved) and in the direction of paralle! lines, will (by Law 2.) move all the bodies equally (as to velocity) and therefore will never produce any change in the pofitions or motions of the bodies among themfelves.
S с H O LIUM.

Hitherto I have laid down fuch principles as have been receiv'd by Mathematicians, and are confirm'd by abundance of experiments. By the two firft Laws and the firf two Corollaries, Galleo difcover'd that the defcent of bodies obferv'd the duplicate ratio of the time, and that the motion of projectiles was in the curve of a Parabola; experience agreeing with both, unlefs fo far as thefe motions are a little retarded by the refiftance of the Air. When a body is falling, the uniform force of its gravity acting equally, imprefles, in equal particles of time, equal forces upon that body, and therefore generates equal velocities : and in the whole time impreffes a whole force and generates a whole velocity, proportional to the time. And the fpaces defrribed in pro-
proportional times are as the velocities and the times conjunctly; that is, in a duplicate ratio of the times. And when a body is thrown upwards, its uniform gravity impreffes forces and takes off velocities proportional to the times; and the times of afcending to the greateft heights are as the velocities to be taken off, and thofe heights are as the velocities and the times conjunctly, or in the duplicate ratio of the velocities. And if a body be projected in any direction, the motion arifing from its projection is compounded with the motion arifing from its gravity. As if the Body A by its motion of projection alone (Fig. 3.) could defcribe in a given time the right line $A B$, and with its motion of falling alone could defcribe in the fame time the altitude $A C$; compleat the paralellogram $A B D C$, and the body by that compounded motion will at the end of the time be found in the place D; and the curve line $A E D$, which that body defcribes, will be a Parabola, to which the right line $A B$ will be a tangent in A; and whofe ordinate $B D$ will be as the qquare of the line $A B$. On the fame laws and corollaries depend thofe things which have been demonfrated concerning the times of the vibration of Pendulums, and are confirm'd by the daily experiments of Pendulum clocks. By the fame together with the third Law Sir Cbriff. Wren, Dr. Wallis and Mr. Huygens, the greateft Geometers of our thmes, did feverally derermine the rules of the Congrefs and Reflexion of hard badies, and much about the fame time communicated their difcoveries to the Royal Society, exactly agreeing among themfelves, as to thofe rules. Dr. Wallis indeed was fomething more early in the publication; then followed Sir Chrifoopher Wren, and laftly, Mr. Huygens. But Sir Chrifopher Wren confirmed the truth

Laws. of Natural Prilofophy.
truth of the thing before the Royal Sociery by the experiment of pendulums, which Mr Mariorte foon after thought fit to explain in a treatife entircly upon that fubject. But to bring this experiment to an accurate agreement with the theory, we are to have a due regard as well to the refiftance of the air, as to the claftic force of the concurring bodies. Let the fpharical bodies $A B$, be furpended by the parali:el and equal frings, $A C$, $B D, F i g .4$. from the centres C, D. About thefe centres, with thof intervals, defribe the femicircles $E A F, G B H$ bifeted by the radii $C A, D B$. Bring the body A to any point R of the arc $E A F$, and (withdrawing the body B) let it go from thence, and affer one ofcillation fuppofe it to return to the point V : then $R V$ will be the retardation arifing from the refiftance of the air. Of this $R V$ let $S T$ be a fourth part fituared in the midd'e, to wit, fo as $R S$ and $T V$ may be equal, and $R S$ may be to $S T$ as 3 to 2 : then will $S T$ reprefent very nearly the reardation during the defcent from S to A. Reftore the body B to its place: and fuppofing the body A to b: let fall from the point S, the velociry thereof in the place of reflexion A, without fenfible error, will be the fame as if it had deffended in vacuo from the point T. Upon which account this velocity may be reprefented by the chord of the arc $T A$. For it is a propolition well known to Geometers, that the velocity of a pendulous body in the loweft point is as the chord of the are which it has defcribed in its defent. Afeer reflexion, fuppofe the body A comes to the place s, and the body B to the place k. Withdraw the body B, and find the place v, from which if the body A, being let go, fhould after one of llation return to the place r, $s t$ may be a fourth part of $r v$, fo paced in the middle thereof as to leave r s equal to $t v$, and
let the chord of the arc $t A$ reprefent the velocity which the body A had in the place A immediately after reflexion. For t will be the true and correet place to which the Body A fhould have afcended, if the refiflance of the Air had been taken off. In the fame way we are to correct the place k to which the body B afends, by finding the place l to which it Thould have afcended in vacuo. And thus every thing may be fubjected to experiment, in the fame manner as if we were really placed in vacuo. Thefe things being done we are to take the product (if I may fo fay) of the body A, by the chord of the arc $T A$ (which reprefents its velocity) that we may have its motion in the place \boldsymbol{A} immediately before reflexion; and then by the chord of the $\operatorname{arc} t A$, that we may have its motion in the place A immediately after reflexion. And fo we are to take the product of the body B by the chord of the $\operatorname{arc} B l$, that we may have the motion of the fame immediately affer refexion. And in like manner, when two bodies are let go together from different places, we are to find the motion of each, as well before as after reflexion; and then we may compare the motions between themfelves, and co'lett the effects of the reflexion. Thus trying the thing with pendulums of ten feet, in unequal as well as equal bodies, and making the bodics to concur after a defcent through large fpaces, as of 8, 12, on 16 feet, I found always, without an errour of 3 inches, that when the bodies concurr'd together direetly, equal changes toward the contrary parts were produced in their motions; and of confequence, that the action and reaction were always equal. As if the body A imping'd upon the body B ar reft with 9 parts of motion, and lofing 7 , proceeded after reffexion with 2 ; the body B was carried backwards with tho.e 7 parts. If the bodies

Laws
concurr'd with contrary motions, A with twelve parts of motion, and B with fix, then if A receded with $2, B$ receded with 8 , to wit, with a deduction of 14 parts of motion on each fide. For from the motion of A fubducting 12 parts, nothing will femain: but fubducting 2 parts more, a motion will be generated of 2 parts towards the contrary way; and fo, from the motion of the body B of 6 parts, fubducting i4 parts, a motion is generated of 8 parts towards the contrary way. But if the bodies were made both to move towards the fame way ; A, the fwifter , with i4 parts of motion, B, the flower, with s , and after reflexion A went on with 5, Blikewife went on with 14 parts; 9 parts being transferr'd from A to B. And fo in other cafes. By the congrefs and collifion of bodies, the quantity of motion, collectid from the fum of the motions directed towards the fame way, or from the difference of thofe that were directed towards contrary ways, was never changed. For the error of an inch or two in meafures may be eafily afcrib'd to the difficulty of executing every thing with accuracy. It was not eafy to let go the two pendulums fo exactly together, that the bodies fhould impinge one upon the other in the bowermoft place $A B$; nor to mark the places s, and k, to which the bodies alcended after congrefs. Nay, and fome errors too might have happen'd from the unequal denfity of the parts of the pendulous bodies themfelves, and from the irregularity of the texture proceeding from other caufes.

But to prevent an objection that may perhaps be alledged againft the rule, for the proof of which this experiment was made, as if this rule did fuppo'e that the bodies were either abfolutely hard, or at leaft perfectly chaftic; whereas no fuch bodies are to be found in na-

D 2 ture;
ture; I muft add that the experiments we have been defcribing, by no means depending upon that qualiry of hardnefs, do fucceed as well in foft as in hard bodies. For if the rule is to be tried in bodies not perfectly hard, we are only to diminifh the reflexion in fuch a certain proportion, as the quantity of the elaftic force requires. By the theory of Wren and Huygens, bodies abfolutely hard return one from another with the fame velocity with which they meet. But this may be affirm'd with more certainty of bodies perfectly elaftic. In bodes imperfectly elaftic the velocity of the return is to be diminifh'd together with the elaftic force; becaufe that force (except when the parts of bodiesare bruifed by their congrefs, or fuffer fome fuch extenfion as happens under the ftrokes of a hammer, is (as far as I can perceive) certain and determined, and makes the bodies to return one from the other with a relative velocity, which is in a given ratio to that relative velocity with which they met. This I tried in balls of wool, made up tightly and ftrongly compre's'd. For firft, by letting go the pendulous bodies and meafuring their reflexion, I determined the quantity of their elaftic force; and then, according to this force, eftimated the reflexions that ought to happen in other cafes of congrefs. And with this computation other experiments made afrerwards did accordingly agree; the balls always receding one from the other with a relat.ve velocity, which was to the relative velocity with which they met, as about 5 to 9 . Balls of fteel return'd with almoft the fame velocity : thofe of cork with a velocity fomething lefs: but in balls of glafs the proportion was as about is to 16 . And thus the third law, fo far asit regards percuffions and reflexions, is prov'd by a theory, exactly agrecing with experienc:.

Laws. of Natural Phi'coophy:
In attractions, I briefly demonftrate the thing after this manner. Suppofe an obflacle is interpos'd to hinder the congrefs of any two bodies A, B, mutually attracting one the other : then if either body as A, is more attracted towards the other body B, than that orher body B is towards the firft body A, the obftacle will be more ftrongly urged by the preffure of the body A than by the preffure of the body B; and therefore will not remain in xquilibrio: but the ftronger preffure will prevail, and will make the fyftem of the two bodies, together with the obftacle, to move direetly towards the parts on which B lies; and in free fpaces, to go forward in infinitum with a motion perpetually acce'erated. Which is abfurd, and contrary to the firft law. For by the firft $l_{2 w}$, the fyftem ought to perfevere in it's ftate of reft, or of moving uniform'y forward in a right line; and therefore the bodies muft equally prefs the obftacle, and be equally attracted one by the other. I made the experiment on the loadftone and iron. If thefe placid apart in proper veffe's, are made to float by one another in flanding water; neither of them will propellt the other, but by being equally ateracted, they will fuftain each others preffure, and reft at laft in an equilibrium.

So the gravitation betwixt the Earth and its parts, is mutual. Let the Earth FI (Fig. 5.) be cut by any plane $E G$ into two parts $E G F$ and $E G I$: and their weights one towards the other will be murually equal. For if by another plane $H K$, paral'el to the former $E G$, the greater part $E G I$ is cut into two parts $E G K H$ and $H K I$, whereof HKI is equal to the part EFG firft cut off: it is evident that the middle part $E G_{K} H$ will have no propenfion by its proper weight towards either fide, but will hang as it wereand reft in an eq librium betwixt both. But the one extreme part HKI_{1} D 3 wil
will with its who'e weight bear upon and prefs the middle part toward the other extreme part $E G F$; and therefore the force, with which $E G I$, the fum of the parts $H K I$ and $E G K H$, tends towards the third part $E G F$, is equal to the weight of the part $H K I$, that is, to the weight of the third part $E G F$. And therefore the weights of the two parts $E G I$ and $E G F$, one towards the other, are equal, as I was to prove. And irdeed if thofe weights were not equal, the whole Earth floating in the non-refifting ather, would give way to the greater weight, and retiring from it, wou'd be carried off in infinitum.

And as thofe bodies are equipollent in the congrefs and reflexion, whofe velocities are reciprocally as their innate forces: fo in the ufe of mechanic inftruments, thofe agents are equipollent and mutually fuftain each the contrary preffure of the other, whofe velocities, eftimated according to the determination of the forces, are reciprocally as the forces.

So thofe weights are of equal force to move the arms of a Ballance, which during the play of the ballance are reciprocally as their velocities upwards and downwards: that is, if the afcent or defcent is direct, thofe weights are of equal force, which are reciprocally as the diftances of the points at which they are fufpended from the axe of the ballance; but if they are turned afide by the interpofition of oblique planes, or other obftacles, and made to afcend or defeend obliquely, thofe bodies will be equipollent, which are reciprocally as the heights of their afcent and defcent taken according to the perpendicular; and that on account of the determination of gravity downwards.

And in like manner in the Pully, or in a combination of Pullies, the force of a hand drawing the rope directly, that is to the weight, whether afcending directly or oblique'y,

Laws. of Natural Pritofoply. 39
obliquely, as the velocity of the perpendicular afcent of the weight to the ve'ocity of the hand that draws the rope, will fuftain the weight.

In Clocks and fuch like inftruments, made up from a combination of whee's, the contrary forcrs that promote and impede the motion of the whecls, if they are reciprocally as the velocities of the parts of the wheel on which they are imprefs'd, will mutually fuftain the one the other.

The force of the Screw to prefs a body is to the force of the hand that turns the handles by which it is moved, as the circular velocity of the haridle in that part where it is impelled by the hand, is to the progreffive velocity of the Screw towards the prefs'd body.

The forces by which the Wedge preffes or drives the two parts of the wood it cleaves, are to the force of the mallet upon the wedge, as the progrefs of the wedge in the direction of the force imprefs'd upon it by the mallet, is to the ve'ocity with which the parts of the wood yield to the wedge, in the diretion of lines perpendicular to the fides of the wedge. And the like account is to be given of all Machines.

The power and ufe of Machines confifts only in this, that by diminifhing the velocity we may augment the force, and the contrary: From whence in all forts of proper Machines, we have the folution of this problem; To move a given weight with a given power, or with a given force to overcome any other given refiftance. For if Machines are fo contriv'd, that the velocities of the agent and reliftant are reciprocally as their forces; the agent will juft fuftain the refiftant : but with a greater difparity of velocity will overcome it. So that if the difparity of velocities is To great, as toovercome all that refiftance, which com-

$$
D_{4}
$$

monly arifes either from the attrition of contiguous bodies as they flide by one another, or from the cohefion of continuous bodies that are to be feparated, or from the weights of bodies to be raifed ; the excels of the force remaining, after all thofe refiftances are overcome, will produce an acceleration of motion proportional thereto, as well in the parts of the Machine, as in the refifting body. But to treat of Mechanics is not my prefent bufinefi. I was only willing to fhew by thofe examples, the great extent and certainty of the third law of motion. For if we eftimate theaction of the agent from its force and velocity conjunctly; and likewife the re-attion of the impediment conjunctly from the velocities of its feveral parts, and from the forces of refiftance arifing from the attrition, cohefion, weight, and acceleration of thofe parts; the attion and re-action in the ufe of all forts of Machines will be found always equal to one another. And fo far as the action is propagated by the intervening inftruments, and at laft imprefsid upon the refifting body, the ultimate det rmination of the attion will be alwajs contrary to the determination of the re-action.

OF

TM

OF THE
 $\begin{array}{llllll}\mathrm{M} & \mathrm{O} & \mathrm{T} & \mathrm{I} & \mathrm{O} & \mathrm{N}\end{array}$ 0 F

 B O D I ES.

 B O D I ES.
 $$
\text { B о ок } \mathrm{I} \text {. }
$$

Section I.

Of the method of fir ft and last ratio's of quantities, by the help whereof we demonflrate the propofitions that follow.

Lemma I.

Quantities, and the ratio's of quantities; which in any finite time converge contimually to equality, and before the end of that time approach nearer the one to the other. other than by any given difference, become ultimately equa!.

If you deny it; fuppofe them to be ultimately unequal, and let D be their ultimate difference. Therefore they cannot approach nearer to equality than by that given difference D; which is againft the fuppofition.

Lemma II.

If in any figure AacE (Pl. x. Fig. 6.) terminated by the right lixes Aa, AE, and the curve acE, there be infcrib'd any number of parallelograms A b, B c, Cd, dec. comprebended under cqual bafes A B, B C, CD, orc. and the fides B b, C c, D d, ofc. parallel to one fide A a of the figure; and the parallelograms a K bl, b Lcm, c Mdn, \&c. are compleated. Then if the breadth of thoofe parallelograms be fuppos'd to be diminifsed, and thatr number to be aygmented in infinitum: I fay that the ultimate ratio's which the infcrib'd fiyure AKbLcMdD , the circum/cribed figure A albmendoE, and curvilin:ar figure AabcdE , will bave to one another, are ratio's of equality.

For the difference of the infcrib'd and circamfrib'd figures is the fum of the parallelograms $K h, L m, M n$, Do, that is, (from the equality of all their bafes) the retangle under one of their bafes $K b$ and the fum of their altitudes $A a$, that is, the retangle $A B l a$, Bus

Sect. I. of Natural Pbilofophy. 34
But this reetangle, becaufe its breadth $A B$ is fuppos'd diminifhed in infinitum, becomes lefs than any given fpace. And therefore (by Lem. I.) the figures infribed and circumfcribed become ultimately equal one to the other ; and much more will the intermediate curvilinear figure be ultimately equal to e either. Q. E. D.

Lemma III.

The fame ultimate ratio's are alfo ratio's of equality, when the breadths AB, BC, DC, © © c. of the parallelograms are unequal, and are all diminibbed in infinitum.

For fuppofe $A F$ equal to the greateft breadth, and compleat the parallelogram FAaf. This parallelogram will be greater than the difference of the infcrib'd and circumferibed figures; but, becaufe its breadth $A F$ is diminifhed in infinitum, it will become lefs than any given retangle. O.E.D.

Cor. 1. Hence the ultimate fum of thofe evanefcent parallelograms will in all parts coincide with the curvilinear figure.

Cor. 2. Much more will the re\&ilinear figure; comprehended under the chords of the evanefcent arcs $a b, b c, c d, \& c$. ultimately coincide with the curvilinear figure.

Cor. 3. Andalfo the circumfrib'd rectilinear figure comprehended under the tangents of the fame arcs.

Cor. 4. And therefore thefe ultimate figures (as to their perimeters a $(E$,) are not rectilinear, but cur: pilinear limits of rectilinear figures.

Lemma

Lemм a IV.

If in two fisures Aa c E, Ppr Г.(Pl.r. Fig.7.) you infcribe (as before) two ranks of paralielograms, an equal number in each rank, and when their breadths are dimini/bid in infinitum, the ultimate ratio's of the parallelograms in one fogure to thofe in the other, each to each refpectively, are the fame; I fay that thof: two fisures AacE, PprT, are to one another in that fame ratio.

For as the parallelograms in the one are feverally to the parallelograms in the other, fo (by compolition) is the fum of all in the one to the fum of all in the other ; and $f 0$ is the one figure to the orher, becaufe (by Lem. 3.) the former figure to the former fum, and the latter figure to the latter fum are both in the ratio of equality. Q. E. D.

Cor. Hence if two quantities of any kind are any how divided into an equal number of parts: and thofe parts, when their number is augmented and their magnitude diminifhed in infinitum, have a given ratio one to the other, the firf to the firf, the fecond to the fecond, and fo on in order: the whole quantities will be one to the other in that fame given ratio. For if, in the figures of this lemma, the parallelograms are taken one to the other in the ratio of the parts, the fum of the parts will always be as the furm of the parallelograms; and therefore fuppofing the number

Plate I.1OL.I. P. 44.

Sect. I. of Natural Pbilofiphy. 45
number of the parallelograms and parts to be augmented, and their magnitudes diminifhed in infinitsm, thofe fums will be in the ultimate ratio of the parallelograme in the one figure to the correfpondent parallelogram in the other; that is, (by the fuppofition) in the ultimate ratio of any part of the one quantity to the correfpondent part of the other.

$$
\text { Lemma } V \text {. }
$$

In fimilar figures, all forts of bomologous fides, whether curvilinear or rectilinear, are proportional; and the area's are in the duplicate ratio of the bomologous sides.

Lemma VI.

If any arc ACB (Pl.2. Fig.r.) givin in pofition is futtended by its chord A B , and in any point A in the middle of the continued curvature, is toucth'd by aright line AD, produced both ways; then if the points A and B approach one another and meet, I fay the angle BAD, contained between the cbord and the tangent, will be diminifbed in infinitum, and ultimately will vaniJ.

For if that angle does not vanifh, the arc $A C B$ will contain with the tangent $A D$ an angle equal to a reCtilinear angle; and therefore the curvature at the point A will not be continued, which is againf the Suppofition.

$$
\mathrm{L}_{\mathrm{EM}} \text {. }
$$

Lemma VII.

The fame things being fuppofed; I fay, that the ultimate ratio of the arc, chord, and tangent, any one to any other, is the ratio of equality. Pl. 2. Fig. I.

For while the point B approaches towards the point ' A, confider always $A B$ and $A D$ as produc'd to the remote points b and d, and parallel to the fecant $B D$ draw bd: and let the arc $A c b$ be always fimilar to the arc $A C B$. Then fuppofing the points A and B to coincide, the angle $d A b$ will vanifh, by the preceding lemma; and therefore the right lines $A b$, Ad (which are always firite) and the intermediate arc $A c b$ will coincide, and become equal among themfelves. Wherefore the right lines $A B, A D$, and the intermediare arc $A C B$ (which are always proportional to the former) will vanifh; and ultimately acquire the ratio of equality. $Q E . D$.

Cor. 1. Whence if through B (Pl.2. Fig.2.) we draw $B F$ parallel to the tangent, always cutting any right line $A F$ paffing through A in F; this line $B F$ will be ultimately in the ratio of equality with the evanefcent arc $A C B$; becaufe, compleating the parallelogram $A F B D$, it is always in a ratio of equality with $A D$.

Cor.2. And if through B and A more right lines are drawn as $B E, B D, A F, A G$ cutting the tangent $A D$ and its parallel $B F$; the ultimate ratio of all the abfciffa's $A D, A E, B F, B G$, and of the chord and $\operatorname{arc} A B$, any one to any other, will be the ratio of equality.

Cos.

Sect. I. of Natural Philofophy.
Cor.3. And therefore in all our reafoning about ultimate ratio's, we may freely ufe any one of thofe lines for any other.

Lem ma VIII.

If the right lines $\mathrm{AR}, \mathrm{BR},(\mathrm{Pl} .2$. Fig. . .) with the arc ACB , the chord AB and the tangent AD , conftitute three triangles $\mathrm{R} A \mathrm{~B}, \mathrm{R} \mathrm{A} C \mathrm{~B}$, RAD , and the points A and B approach and meet: I fay tbat the ultimate form of thefe evaneffent triangles is that of fimelitude, and their ulitimate ratio that of equality.

For while the point B approaches towards the point A confider always $A B, A D, A R$, as produced to the remote points b, d, and r, and $r b d$ as drawn parallel to $R D$, and let the arc $A \subset b$ be always fimilar to the are $A C B$. Then fuppofing the points A and B to coincide, the angle $b A d$ will vanih; and therefore the three triangles $r A b, r A c b, r A d$, (which are always finite) will coincide, and on that account become both fimilar and equal. And therefore the triangles $R A B, R A C B, R A D$, which are always fimilar and proportional to thefe,' will ultimately become both fimilar and equal among themfelves. Q.E.D.

Cor. And hence in all our reafonings about ultimate ratio's, we may indifferently ufeany one of thofe triangles for any other.
Lem ma IX.

If a right line AE ,(Pl.2.Fig. 3.) and a curve line $A B C$, both given by pofition, cut each other in a given angle A ; and to that right line, in another given angle, BD, C E are ordinately applied, meeting the curve in B, C; and the points B and C logether, approach towards, and meet in,the point A : 1 fay that the area's of the triangles A BD, A C E, will ultimately be one to the other in the duplicate ratio of the Jides.

For while the points B, C approach rowards the point A, fuppofe always $A D$ to be produced to the remote points d and e, fo as $A d, A$ e may be proportional to $A D, A E$; and the ordinates $d b, c c$, to be drawn parallel to the ordinates $D B$ and $E C$, and meeting $A B$ and $A C$ produced in b and c. Let the curve $A b c$ be fimilar to the curve $A B C$, and draw the right line $A g$ fo as to touch both curves in A, and cut the ordinates $D B, E C, d b, c c$, in F, G, f, g. Then, fuppofing the length $A \in$ to remain the lame, let the points B and C meet in the point A; and the angle $c A g$ vanifhing, the curvilinear areas $A b d$, Ace will coincide with the rectilinear areas $A f d$, Age; and therefore (by Lem. s) will be one to the other in the duplicate ratio of the fides $A d$, Ac. But the areas $A B D, A C E$ are always proportional to thefeareas; and fo the fides $A D, A E$ are to thefe fides. And therefore the areas $A B D, A C E$ are ultimately

Sect. I. of Natural Philofophy.
one to the other in the duplicate ratio of the fides AD, AE. Q.E.D.

Lemma X .

The paces which a body defcribes ty any finite force urging it, whether that force is determined and immutatle, or is continually ausmented or continua!ly diminiffed, are in the very beginning of the motion one to the othir in the dup. z cate ratio of the times.

Let the times be reprefented by the lines $A D, A E$, and the velocities generated in thofe times by the ordinates $D B, E C$. The fpaces defribed with thefe ve'ocitics will be as the areas $A B D, A C E$, defcribed by thofe ordinates, that is, at the very beg:nning of the motion (by Lem.9.) in the duplicate ratio of the times AD, AE. Q.E.D.
Cor. I. And hence one may eafily infer, that the errors of bodies de'cribing fimilar parts of fimilar figures in proportional times, are nearly in the duplicare ratio of the times in which they are g nerated; if to be thefe errors are generated by any equal forces fimilarly applied to the bodies, and meafur'd by the diftances of the bodies from thofe places of the fimilar figures, at which, without the aetion of thofe forces, the bod.es would have artived in thofe proportional times.

Cor. 2. But the errors that are generated by proportional forces fimilarly applied to the bodies at fimilar parts of the fimilar figures, are as the forces and the fquares of the times conjunetly.

Cor.3.The fame thing is to be underftood of any fpaces whatfoever defrib'd by bodies urged with different forces. All which, in the very beginning of the motion, are as the forces and the fquares of the times conjunctly.

Cor. 4. And therefore the forces are as the fpaces defcribed in the very beginning of the motion direAty and the fquares of the times inverfly.

Cor. 5. And the fquares of the times are as the spaces defrrib'd directly and the forces inverfly.
Scholy it

If in comparing indetermined quantities of different forts one with another, any one is faid to be as any other direftly or inverfly: the meaning is, that the former is augmented or diminithed in the fame ratio with the latter, or with its reciprocal. And if any one is faid to be as any other two or more direct'y or inverfly: the meaning is, that the firft is augmented or diminifhed in the ratio compounded of the ratio's in which the others, or the reciprocals of the others, are augmented or diminifhed. As if A is faid to be as B directly and C directly and D inverfly: the meaning is, that A is augmented or diminilhed in the fame ratio with $B \times C \times \frac{1}{D}$, that is to f ay, that A and ${ }_{D}^{B C}$ are one to the other in a given ratio.

Lemma XI.

The evan!scent fubtenfe of the angle of contact, in all curves, wobich at the point of contact bave a firite curvature, is ultimately in the duplicate ratio of the fubtenfe of the conterminate arc. Pl. 2. Fig 4.

CASE 1. Let $A B$ be that arc, $A D$ its tangent, $B D$ the fubtenfe of the ang!e of contact perpendicular on the tangent, $A B$ the fubtenfe of the arc. Draw $B G$ perpendicular to the fubtenfe $A B$, and $A G$ to the tangent $A D$, meeting in G; then let the points D, B, and G, approach to the points d, b, and g, and fuppofe \mathcal{F} to be the ultimate interfection of the lines $B G$, $A G$, when the points D, B have come to A. It is evident that the diftance $G \mathcal{F}$ may be lefs than any affignable. But (from the rature of the circles palfing through the points $A, B, G ; A, b, g) A B=A G \times B D$, and $A b^{2}=A g \times b d$; and therefore the ratio of $A B^{2}$ to $A b^{2}$ is compounded of the ratio's of $A G$ to Ag and of $B D$ to $b d$. But becau'e $G 7$ may be affum'd of lefs length than any affignable, the ratio of $A G$ to $A \mathrm{~g}$ may be fuch as to differ from the ratio of equality by lefs than any affignable difference; and therefore the ratio of $A B^{2}$ to $A b^{2}$ may be fuch as to differ from the ratio of $B D$ to bd by lefs than any affignable difference. Therefore, by Lem. i. the ultimate ratio of $A B$ - to $A b^{2}$ is the fame with the ult:mate ratio of $B D$ to $b d$. Q. E.B.

CASE 2. Now let $B \widehat{D}$ be inclined to $A D$ in any given angle, and the ultimate ratio of $B D$ to $b d$ will

$$
\text { E } 2 \quad \text { always }
$$

always be the fame as before, and therefore the fame with the ratio of $A B$ - to $A b^{2}$. Q.E.D.
Case 3. And if we fuppofe the ang'e D not to be given, but that the right line $B D$ converges to a given point, or is determined by any other condition whatever ; nevertheclefs, the angles D, d, being determined by the fame law, will always draw nearer to equality, and approach nearer to each other than by any 2 afigned difference, and therefore, by Lem. I, will at laft be equal, and therefore the lines $B D, b d$ are in the fame ratio to each other as before. Q.E.D.

Cor. 1. Therefore fince the tangents $A D, A d$, the arcs $A B, A b$, and their fines $B C, b c$, become ultimately equal to the chords $A B, A b$; their fquares will ultimately become as the fubtenfes $B D, 6 d$.

Coz. 2. Their Iquares are alfo ultimately as the verfed fines of the arcs, bifesting the chords, and converging to a given point. For thofe verfed fines are as the fubtenfes $B D, b d$.
Cor. 3. And therefore the verfed fine is in the duplicate ratio of the time in which a body will defrribe the arc with a geen velociry.

Cor.4. The retilinear triangles $A D B, A d b$ are ult: mat ly in the triplicate ratio of the fides $A D, A d$, and in a ferquiplicate ratio of the fides $D B, d b$; as being in the ratio compounded of the fides $A D$ to $D B$, and of $A d$ to $d b$. So ailo the triangles $A B C$, $A b c$ are ultimately in the tripl cate ratio of the fides $B C, b c$. What I call the fefquiplicate ra:io is the fubduplicate of the triplicate, as being compounded of the fimple and fulduplicate ratio.

Cor. 5. And bccaufe DB, db are ultimately parallel and in the duplicate ratio of the lines $A D, A d$: the ultimate curvilincar arcas $A D B, A d 6$ will be

Sect. T. of Natural Plilofophy.
(by the nature of the parabola) two thi:ds of the reAil near triangles $A D B, A d b$; and the eegments $A B$, $A b$ will be one third of the fame triangles. And thence thofe areas and tho'e fegments will be in the triplicate ratio as well of the tangents $A D, A d$; as of the chords and arcs $A B, A b$.

Scholidm.

But we have all along fuppofed the angle of contact to be neither infinitely greater nor infinitely lefs, than the angles of contact made by circles and their tangents; that is, that the curvature at the point A is neither infinitely (mall nor infinitely grear, or that the interval $A f$ is of a finite magnitude. For $D B$ may be taken as $A D$: in which cafe no circle can bedrawn through the point A, between the tangent $A D$ and the curve $A B$, and therefore the angle of contait will be infinite'y lefs than thofe of circles. And by a like reafoning if $D B$ be made fucceffive'y as $A D$, $A D^{5}, A D^{\circ}, A D$, ơc. we fhall have a feries of angles of conraf, proceeding in infinitum, wherein every fucceeding term is infinitely lets than the preeding. And if $D B$ be made fucceffively as $A D^{2}, A D^{\frac{3}{2}}, A D^{\prime}$, $A D^{\frac{5}{4}}, A D^{\frac{5}{3}}, A D^{\frac{7}{6}}$, éc. we mall have another infinite feries of angles of contact, the firft of which is of the fame fort with thofe of circles, the fecond infinitely greater, and every fucceeding one infinitely greater thán the preceding. Bur between any two of thete angles another feries of intermediate angles of contate may be interpofed proceeding both ways in infinitum, wherein every fucceeding angle thall be infinitcly grearer, or infinitely lefs than the preceding. As if between the angles of this feries, a new feries of intermediate angles may be interpofed, differing from one another by infinite intervals. Nor is nature confin'd to any bounds.

Thore things which have been demonftrated of curve lines and the fuperficies which they comprehend, may be eafily applied to the curve fuperficies and contents of folids. Thefe lemmas are premifed, to avoid the tedioufnefs of deducing perplexed demonftrations ad abfurdum, according to the method of the ancient geometers. For demonftrations are more contrated by the method of indivilibles: But becaufe the hypothefis of indivifibles feems fomewhat harfh, and therefore that method is reckoned lefs geometrical ; I chofe rather to reduce the demonftrations of the following propofitions to the firt and laft fums and ratio's of nafcent and evanclcent quantities, that is, to the limits of tho'e fums and ratio's ; and fo to premife, as fhort as I could, the demonftrations of thofe limits. For hereby the fame thing is perform'd as by the method of indivifibles; and now thofe principles being demonftrated, we may ufe them with more fafery. Therefore if hereafter, I fhould happen to confider quantities as made up of particles, or thould ufe little curve lines for right ones; I would not be underftood to mean indivifibles, but evanefe:nt divifible quantities; not the fums and ratio's of determinate parts, but always the limits of fums and ratio's: and that the force of fuch demonftrations always depends on the method lay'd down in the foregoing lemma's.
Perhaps it may be objetted, that there is no ultimate proportion of evanefecent quantities; becaufe the

Sfect. I. of Natural Plitoriphy.
proportion, before the quantities have vanifhed, is not the ultimate, and when they are vanifhed, is none. But by the fame argument it may be alledged, that a body arriving at a certain place, and there ftopping, has no ultimate velocity : becau'e the velocity, before the body comes to the place, is not its u'timate velocity; when it has arrived, is none. But the anfwer is eafy; for by the ultimate velocity is meant that with which the body is moved, neither before it arrives at its laft place and the morion ceafes, nor after, but at the very inflant it arrives; that is, that velocity with which the body arrives at its laft place, and with which the motion ceafes. And in like manner, by the ultimate ratio of evanefcent quantitics is to be underfood the ratio of the quantities, not before they vanifh, nor afterwards, but with which they vanith. In like manner the firft ratio of nafeent quantities is that with which they b:gin to be. And the firft or haft fum is that with which they begin and ceafe to be (or to be augmented or diminifhed.) There is a limit which the velocity at the end of the mot on may atrain, but not exceed. This is the ultimate velocity. And there is the 1 he limit in all quantities and proportions that beginand ceafe to be. And fince fuch limits are certain and definite, to determine the fam: is a problem frialy geomerrica'. But whatever is geometrical we may be a lowed to ufe in determ ning and demonitrating any other thing that is likewife geomerrica!.

It may alfo be objected, that if the ultimate ratio's of evaneffent quantities are given, the:r ultimate magnitudes will be a'fo given: and fo all quantities will confift of indivifibles, which is contrary to what Euclid has demonftrated concerning incommenfurables, in the 1oth book of his Elements. But this objection is

E 4 founded
founded on a falle fuppofition. For thofe ultimate ratio's with which quantities vanifh, are not truly the ratio's of u'timate quantities, but 1 mits towards which the ratio's of quantities decreafing without limit, do always converge; and to which they approach nearer than by any given difference, but n:ver go beyond, nor in effed attain to, till the quantities are dim:nifhed in infinitum. This thing will appear more evident in quantities infinitely great. If two quantities, whofe difference is given, be augmented in infunitam, the ultimate ratio of thefe quantities will be given, to wit, the ratio of equality; but it does not from thence follow, that the u'timate or greateft quantities themfelves, whofe ratio that is, will be given. Therefore if in what follows, for the fake of being more eafily underfood, I fhould happen to mention quantities as leaft, or evanefcent, or ultimate; you are not to fuppofe that quantities of any determinate magnitude are meant, but luch as are conceiv'd to be always diminihhed without end.

SECTION

S E C T I N II.

Of the invention of centripetal forces.

Proposition I. Theorem I.
The areas, which revolving bodies defcribe by radii drawn to an immoveable centre of force, do lie in the fame immoveable planes, and are proportional to the times in wibich they are defcribed. PI. 2. Fig. s.
 O R fuppofe the time to be divided into equal parts, and in the firft part of that time, let the body by its innate force defrribe the right line $A B$ In the fecond part of that time, the fame would, (by law 1.) if not binder'd, proceed directly to c, along the line $B c$ equal to $A B$; fo that by the radii $A S, B S, c S$ drawn to the centre, the equal areas $A S B, B S C$, would be defrribed. But when the body is arrived at B, fuppofe that a centripetal force atts at once with a great impulfe, and turning afide the body from the right line $B c$, compells it afterwards to continue its motion along the right line $B C$. Draw $c C$ parallel to $B S$ meeting $B C$ in C; and at the end of the fecond part of the time, the body (by Cor. 1. of the haws) will be found in C, in the fame plane with the triangle $A S B$. Joyn $S C$, and, becaufe $S B$ and $C c$ are parallel,
para'lel, the triang le SBC will be equal to the triangle $S B c$, and therefore alfo to the triangle $S A B$. By the like argument, if the centrip tal force acts fucceffively in $C, D, E, \& C$. and makes the body in each fingle particle of time, to defcribe the right lines $C D$, $D E, E F, \& c$. they willall lye in the fame plane; and the triangle $S \dot{C} D$ will be equal to the triangle $S B C$, and $S D E$ to $S C D$, and $S E F$ to $S D E$. And therefore in equal times, equal areas are deficrib'd in one immoveable plane: and, by compofition, any fums SADS, SAFS, of thofe areas, are one to the other, as the times in which they are defrib'd. Now let the number of thofe triangles be augmented, and their breadth dim nifhed in infinitum; and (by cor. 4. lem. 3.) their ultimate perimetir $A D F$ will be a curve line: and therefore the centripetal force, by which the body is perpetually drawn back from the tangent of this curve, will act continually; and any defcribd areas $S A D S, S A F S$, which are always proportional to the times of defrription, will, in this cafe alfo, be proportional to thofe times. Q.E.D.

Cor. i. The velocity of a body attracted towards an immoveable centre, in fpaces void of refiftance, is reciprocally as the perpendicular let fall from that centre on the right line that touches the orbit. For the velocities in thofe places A, B, C, D, E are as the bafes $A B, B C, C D, D E, E F$, of equal triangles; and thefe bafes are reciprocally as the perpendiculars let fall upon them.

Cor.2. If the chords $A B, B C$ of two arcs, fucceffively defcribed in equal times, by the fame body, in fpaces void of refiftance, are compleated into a parallelogram $A B C V$, and the diagonal $B V$ of this parallelogram, in the pofition which it ultimately acquires when thofe arcs are diminifhed in infunitum, is produced

Sect. II. of Natural Philofoply.
duced both ways, it will pafs through the centre of force.

Cor.3. If the chords $A B, B C$, and $D E, E F$, of arcs defcribd in equal times, in fpaces void of refiftance, are compleated into the parallelograms $A B C V, D E!Z$; the forces in B and E are one to the other in the ultimate ratio of the diagonals $B V, E Z$, when thofe arcs are diminifhed in infinitum. For the motions B. and $E F$ of the body (by cor. I. of the laws) are compounded of the motions $E c, B V$, and $E f, E Z$: but $B V$ and $E Z$, which are equal to $C c$ and If, f, in the demonftration of this propofition, were generated by the impulfes of the centripetal force in B and E, and are therefore proportional to tho 'e impulfes.

Cor. 4. The forces by which bodies, in faces void of refiftance, are drawn back from rectilinear motions, and turned into curvilinear orbits, are one to another as the vers'd fines of arcs defcribed in equal times; which ver'ed fines tend to the centre of force, and bifect the chords when thofe arcs are diminifhed to infinity. For fuch vers'd fines are the halfs of the diagonals mentioned in cor. 3 .

Cor.5. And therefore thofe forces are to the force of gravity, as the faid vers'd fines to the vers'd fines perpendicular to the horizon of thofe parabolic arcs which projediles defrribe in the fame time.

Cor.6. And the fame things do all hold good (by cor. 5. of the laws) when the planes in which the bodies are mov'd, together with the centres of force which are placed in thofe planes, are not at reft but move uniformly forward in right lines.

Prop,

Proposition 1I. Theorem II.

Every body, that moves in any curve line deficribed in a plane, and by a ratius, diaun to a point either immoveable, or moving forixard with an uniform rectilinear motion, difcribes alout that point areas proportional to the times, is urged by a contripetal force directed to that point.

Case i. For every body that moves in a curve line, is (by law 1.) turned afide from its rectilinear coarfe by the action of fome force that impels it. And that force by which the body is turned off from its rectilinear courfe, and is made to defcribe, in equal times, the equal leaft triangles $S A B, S B C, S C D, \sigma \subset \cdot$ about the immoveable point S, (by prop. 40 . book 1 . clem. and law 2.) aCts in the place B, according to the direction of a line parallel to $c C$, that is, in the direction of the line $B S$; and in the place C, according to the direction of a line parallel to $d D$, that is, in the direction of the line CS,\&:C. And therefore acts always in the direction of lines tending to the immoveable point S. O.E.D.

CASE2. And (by cor. 5. of the laws) it is indifferent whether the fuperficies in which a body deferibes a curvilinear figure be quiefcent, or moves together with the body, the figure defcrib'd, and its point S, uniformly forwards in right lines.

Cor.

Plale II.I ol. I. P. 60 .

Tig $3 \cdot p \cdot 4^{8}$

P. Fo.

Sect. II. of Natural Pbilofophy. oi
Cor. i. In non-refifting faces or mediums, if the areas are not proportiona! to the times, the forces are not directed to the point in which the radii meet; but deviate therefrom in confeguentia, or towards the parts to which the motion is ditected, if the defrription of the areas is accelerated ; but in antecedentia, if retarded.

Cor. 2. And even in refifting mediums, if the defcription of the areas is accelerated, the direttions of the forces deviate from the point in which the radii meet, towards the parts to which the motion tends.
S с H O LIUM.

A body may be urged by a centripetal force compounded of feveral forces. In which cafe the meaning of the propofition is, that the force which refults out of all, tends to the point S. But if any force, atts perpetually in the direttion of lines perpendicular to the defcribd furface; this force will make the body to deviate from the plane of its motion: but will neither augment nor diminih the quantity of the defribed furface, and is therefore to be neglected in the compofition of forces.

Proposition III. Theorem III.

Every body, that, by a radius draven to the centre of another body boweoever moved, defcribes arcas about that centre proportional to the times, is urged by a force compounded out of the centripetal force tending to that other body, and of all the accelerative force by wibich that other body is impelled.

Let L reprefent the one, and T the other body; and (by Cor. 6 of the laws) if both bodies are urged in the direction of parallel lines, by a new force equal and contrary to that by which the fecond body T is urgeed, the firft body L will go on to defcribe

- about the other body T, the fame areas as before: but the force, by which that other body \boldsymbol{T} was urged, will be now deftroyed by an equal and contrary force; and there!ore (by Law 1.) that other body T, now left to it felf, will either relt, or move uniformly forward in a right line: and the firft body L impell'd by the difference of the forces, that is, by the force remaining, will go on to defcribe about the other body T, areas proportional to the times. And therefore (by Theor. 2.) the difference of the forces is directed to the other body T, as its centre. O.E.D.

Cor. I. Hence if the one body L, by a radius drawn to the other body T, defcribes areas proportional to the times; and from the whole force, by which the firft body L is urged (whether that force is fimple,

Sect. II. of Natural Plilofophy. 63 fimple, or, according to cor. 2. of the laws, compounded out of feveral forces) we fubduct (by the fame cor.) that whole accelerative force, by which the other body is urged ; the whole rema ning force by which the firft body is urged, will tend to the other body T, as its centre.
Cor.2. And, if thefe areas are proportional to the times nearly, the remaining force will tend to theother body T nearly.
Cor.3. And vice verfa, if the remaining force tends nearly to the other body T, tho'e areas will be nearly proportional to the times.
Cor. 4. If the body L, by a radius drawn to the other body T, defribes areas, which compared with the times, are very unequal; and that other body T be either at reft or moves uniformly forward in a right line: the attion of the centripetal force tending to that other body T, is either none at all, or it is mix'd and compounded with very powerful actions of other forces : and the whole force compounded of them all, if they are many, is directed to another (immoveable or moveable) centre. The fame thing obains, when the other body is moved by any motion whatfoever; provided that centripetal force is taken, which remains after fubducting that whole force acting upon that other body T.
S C H O L I U M.

Becaufe the equable defrription of areas indicates that a centre is refpeted by that force with which the body is moft affeted, and by which it is drawn back from its reatilinear motion, and retained in its orbit:

64 Mathematical Principles Book I.
why may we not be allowed in the following difcourfe, to ufe the equable defrription of areas as an indication of a centre, about which all circular motion is performed in free fpaces?

Proposition IV. Theorem IV.
The centripctal forces of bodies, which by equable motions defcribe diffirent circles, tend to the centres of the fame circles; and are one to the other, as the fquares of the arcs defcribed in equal times applied to the radii of the circles.

Thefe forces tend to the centres of the circles (by prop. 2. and cor. 2. prop. 1) and are one to another as the verfed fines of the leaft arcs defcribed in equal times (by cor.4. prop. 1.) that is, as the fquares of the fame arcs applied to the diameters of the circles, (by lem. 7.) and therefore fince thofe arcs are as arcs defcribed in any equal times, and the diameters are as the radii ; the forces will be as the fquares of any arcs defribed in the fame time applied to the radii of the circles. Q.E.D.

Cor. I. Therefore, fince thofe arcs are as the velocities of the bodies, the centripetal forces are in a ratio compounded of the duplicate ratio of the velocities direstly, and of the fimple ratio of the radii inverfely.

Cor.

Sect. II. of Naturai Pbilofophy.
Cor. 2. And, fince the periodic times are in a ratio compounded of the ratio of the radii directly, and the ratio of the velocities inverfely; the centripetal forces are in a ratio compounded of the ratio of the radii direetly, and the duplicate ratio of the periodic times inverfely.
Cor. 3. Whence if the periodic times are equal, and the velocities therefore as the radii ; the centripetal forces will be alfo as the radii; and the contrary.
Cor. 4. If the periodic times and the velocities are both in the fubduplicate ratio of the radii; the centripetal forces will be equal among themfelves : and the contrary.

Cor. s. If the periodic times are as the radii, and therefore the velocities equal 3 the centripetal forces will be reciprocally as the radii: and the contrary.
Cor. σ. If the periodic times are in the fefquiplicxe ratio of the radii, and therefore the velocities reciprocally in the fubduplicate ratio of the radii ; the centripetal forces will be in the duplicate ratio of the radiii inverfely: and the concrary.

Cor. 7. And univerally, if the periodic time is as any power R^{n} of the radius R, and therefore the velocity reciprocally as the power $R^{n}-1$ of the radius ; the centripetal force will be reciprocally as the power $R^{2 n-1}$ of the radius: and the contrary.
Cor. 8. The fame things all hold concerning the times, the velocities, and forces by which bodies defcribe the fimilar parts of any fimilar figures, that have their centres in a firmilar pofition within thofe figures ; as appears by applying the demonftration of the preceding cafes to thofe. And the application is eafy by only fubflituting the equable deffription of areas in the place of equable motion, and ufing the diftances of the bodies from the centres inftead of the radii. F Cor.

Cor. 9. From the fame demonftration it likewire follows, that the arc which a body, uniformly revolving in a circle by means of a given centripetal force, defcribes in any time, is a mean proportional between the diameter of the circle, and the fpace which the fame body falling by the fame given force would defcend thro' in the fame given time.

Scholium.

The cafe of the oth corollary obtains in the ceIcftial bodies, (as Sir Chriflopher Wren, Dr. Hooke, and Dr. Halley have feverally obferved) and therefore in what follows, I intend to treat more at large of thofe things which relate to centripetal force decreafing in a duplicate ratio of the diffances from the centres.

Moreover, by means of the preceding propofition and its corollaries, we may difcover the proportion of a centripetal force to any other known force, fuch as that of gravity. For if a body by means of its gravity revolves in a circle concentric to the Earth, this gravity is the ceatripetal force of that body. But from the defcent of heavy bodies, the time of one entire revolution, as well as the arc defcribed in any given time, is given, (by cor. 9 . of this prop.) And by fuch propofitions, Mr. Huygens, in his excellent book De Ho ologio Ofillatorio, has compared the force of gravity with the centrifugal forces of revolving bodies.

The preceding propofition may be likewifedemonftrated afier this manner. In any circle fuppofe a polygon to be infcribed of any number of fides. And if a body, moved with a given velocity along the fides of the polygon, is reflected from the circle at the feveral angular points; the force, with which at

Sect. II. of Natural Philofophy. 67
every reffetion it ftrikes the circle, will be as its velocity : and therefore the fum of the forces, in a given time, will be as that velocity and the number of reflexions conjunetly; that is, (if fthe fpecies of the polygon be given) as the length defrribed in that given time, and increfeded or diminifhed in the ratio of the fame length to the radius of the circle; that is, as the〔quare of that length applied to the radius: and therefore if the polygon, by having its fides diminifhed in infinitum, coincides with the circle, as the fquare of the arc defcribed in a given time applied to the radius. This is the centrifugal force, with which the body impells the circle ; and to which the contrary force, wherewith the circle continually repells the body. towards the centre, is equal.

Proposition V. Problemi.

There being given in any places, the velocity weith which a boly defribes a given figure, by means of forces directed to fome common centre; to find that centre. Pl. 3. Fig. I.

Let the three right lines $P T, T Q V, V R$ touch the figure defrribed in as many points P, Q, R, and meet in T and V. On the tangenis erect the perpendiculars $P A, Q B, R C$, reciprocally proportional to the velocities of the body in the points P, Q, R, from which the perpendiculars were raired; that is, fo that $P A$ may be to $Q B$ as the velocity in Q to the velocity in P, and $Q B$ to $R C$ as the velocity in R to the velocity in O. Thro' the ends A, B, C, of the perpendiculars draw $A D, D B E, E C, \underset{x}{x}$ right angles, F 2

68

 Matiematial Principles Book I. meeting in D and E : And the right lines $T D, V E$ produced, will meet in S the centre required.For the perpendiculars let fall from the centre S on the tangents $P T, Q T$, are reciprocally as the velocities of the bodies in the points P and Q (by cor. I. prop. r.) and therefore, by conftruction, as the perpendiculars $A P, B Q$ directly; that is, as the perpendiculars let fall from the point D on the tangents. Whence it is eafy to infer, that the points S, D, T, are in one right line. And by the like argument the points S, E, V are alfo in one right line; and therefore the centre S is in the point where the right lines $T D$, $V E$ meet. Q. E. D.

Proposition VI. Theorem V.
In afpace void of refficance, if a body revolves in any orlit aloitt an immovealle centre, and in the lenft time defcrites any arc itft then nafcent; and the verfed fine of that arc is fuptofed to be drazen, lifecting the chard, and prodiced palfirg t rough the centre of force: the centrip:al force in the middle of the arc, will bo as the verfed ine directly and the Slare of the time inverfely.
For the verfed fine in a given time is as the force (by cor. 4. prop. I.) and augmenting the time in any ratio, becaufe the arc willbe augmented in the fame ratio, the verfd fine will be augmented in the duplicate of that ratio, (by cor. 2 and 3 . lem. 11.) and therefore is as the force and the fquare of the time. Subduet on both fides the duplicate zatio of the time, and the force

Sect. II. of Natural Pbilooopby.
will be as the verfed fine directly and the fquare of the time inverfely. Q. E. D.

And the fame thing may alfo be eafily demonftrated by corol. 4. lem. 10.

Cor. I. If a body P revolving about the centre S, (Pl. 3. Fig. 2.) defribes a curve line $A P Q$, which a right line $Z P R$ touches in any point P; and from any other point Q of the curve, $Q R$ is drawn parallel to the diftance $S P$, meeting the tangent in R; and $Q T$ is drawn perpendicular to the diffance $S P$: the centripetal force will be reciprocaily as the folid $S P^{2} \times Q T^{2}$, if the folid be taken of that magnitude $Q R$
which it ultimately acquires when the points P and Q coincide. For $Q R$ is equal to the verfed fine of double the are $Q P$, whofe middle is P : and double the triangle $S Q P$, or $S P \times Q T$ is proportional to the time, in which that doublearc is deferibed; and therefore may be ufed for the exponent of the time.
Cor. 2. By a like reafoning, the centripetal force is reciprocally as the folid $\frac{S r^{2} \times Q P^{2}}{Q R}$; if $S T$ is a perpendicular from the centre of force on $P R$ the tangent of the orbit. For the rectangles $S Y \times Q P$ and $S P \times Q T$ are equal.
Cor. 3. If the orbit is either a circle, or touches or cuts a circle concentrically, that is, contains with a circle the leaft angle of contatt or fection, having the fame curvature and the fame radius of curvature at the point P; and if $P V$ be a chord of this circle, drawn from the body through the centre of force; the centripetal force will be reciprocally as the folid $S r^{2} \times P V . \quad$ For $P V$ is $\frac{Q P^{2}}{Q R .}$
F_{3} Cor.

Cor. 4. The fame things being fuppofed, the centripetal force is as the fquare of the velocity directly, and that chord inverfely. For the velocity is reciprocally as the perpendicular $S T$, by cor. 1 . prop. I.

Cor. 5. Hence if any curvilinear figure $A P Q$ is given; and therein a point S is alfo given to which a centripetal force is perpetually directed ; that law of centripetal force may be found, by which the body P will be continually drawn back from a reetilinear courfe, and being detained in the perimeter of that figure, will defrribe the fame by a perpetual revolution. That is, we are to find by computation, either the folid $\frac{S P^{2} \times Q T^{2}}{Q R}$ or the folid $S r^{2} \times P V$, reciprocally proportional to this force. Examples of rhis we fall give in the following problems.

Proposition ViI. Problem II.
If a body revolves in the circumference of a circle; it is propofed to find the lave of centritetal force direcled to any given point. Pl. 3. Fig. 3.

Let $V Q^{P} A$ be the circumference of the circle; S the given point to which as to a centre the force tends; P the body moving in the circumference; O the next place into which it is to move; and $P R \bar{Z}$ the tangent of the circle at the preceding place. Through the point S draw the chord $P V$, and the diameter $V A$ of the circle, jo:n $A P$, and draw $Q T$ perpendicular to $S P$, which produced, may meet the tan-

Sect. II of Natural Philofophy.
gent $P R$ in Z; and lafly, thro the point Q, draw $L R$ parallel to $S P$, meeting the circle in L, and the tangent $P Z$ in R. And, becaufe of the fimilar triangles $Z Q R, Z T P, V P A$, we fhall have $R P^{2}$. that is, $Q R L$, to $Q T^{2}$, as $A V^{2}$ to $P V^{2}$. And therefore $\frac{Q R L \times P V^{2}}{A V^{2}}$ is equal to $Q T^{2}$. Multiply thofe equals by $\frac{S P^{2}}{Q R}$, and the points P and Q coinciding, for $R \frac{Q}{L}$ write $P V$; then we fhall have $\frac{S P^{2} \times P V^{3}}{A V^{2}}=\frac{S P^{2} \times Q T^{2}}{Q R}$. And therefore (by cor. I. and 5 . prop. 6.) the centripetal force is reciprocally as $\frac{S P^{2} \times P V^{3}}{A V^{2}}$, that is, (becaufe $A V^{2}$ is given) reciprocally as the fquare of the diftance or altitude $S P$, and the cube of the chord $P V$ conjunely. Q. E. I.

The fame otherwife.
On the tangent $P R$ produced, let fall the perpendicular $S T$: and (becaufe of the fimilar triangles $S(P, V P A)$ we flall have $A V$ to $P V$ as $S P$ to $S Y$, and therefore $\frac{S P \times P V}{A V}=S Y$, and $\frac{S P^{2} \times P V^{3}}{A V^{2}}=S r^{2} \times P V$. And therefore (by corol. 3 and 5 . prop. 6.) the centripetal force is reciprocally as $\frac{S P^{2} \times P V^{3}}{A V^{2}}$; that is, (becaufe $A V$ is given) reciprocally as $S P^{2} \times P V^{3}$. Q. E. I.

$$
\mathrm{F}_{4} \quad \mathrm{Cor} .
$$

Cor. 1. Hence if the given point S, to which the centripetal force always tends, is placed in the circumference of the circle, as at V; the centripetal force will be reciprocaliy as the quadrato-cube (or fifth power) of the altitude $S P$.

Cor. 2. The force by which the body P in the circle APTV (Pl.3. Fig. 4.) revolves about the centre of force S is to the force by which the fame body P may revoive in the fame circle and in the fame periodic time about any other centre of force R, as $R P^{2}$ $\times S P$ to the cube of the right line $S G$, which from the firft centre of force \mathcal{S}, is drawn parallel to the diftance $P R$ of the body from the fecond centre of force R, meeting the tangent $P G$ of the orbit in G. For by the conftruction of this propofition, the former force is to the latter as $R P^{2} \times P T^{3}$ to $S P^{2} \times$ $P V^{3}$; that is, as $S P \times R P^{2}$ to $\frac{S P^{3} \times P V^{3}}{P T^{3}}$ or, (becaufe of the fimilar triangles $P S G, T P V$) to $S G^{3}$.

Cor. 3. The force by which the body P in any orbit revolves about the centre of force S, is to the force by which the fame body may fivolve in the fame orbit, and in the fame periodic time about any other centre of force R, as the folid $S P \times R P^{2}$, contained under the diftance of the body from the firft centre of force S, and the fquare of its diftance from the fecond centre of force R, to the cube of the right line $S G$, drawn from the firft centre of force S, parallel to the diffance $R P$ of the body from the fecond centre of force R, meeting the tangent $P G$ of the orbit in G. For the force in this orbit at any point P is the fame as in a circle of the fame curvature.

Prop.

Sect. II. of Natural Pbilofophy.
Proposition VIII. Problem III.
If a body moves in the femi-circumference \mathbf{P} QA; it is propofed to find the lawe of the centripetal force tending to a point S, fo remote, that all the lines P S, R S drazen thereto, may be taken for parallels. Pl. 3. Fig. 5 .

From C the centre of the femi-circle, let the femidiameter $C A$ be drawn, cutring the parallels at right angles in M and N, and join $C P$. Becaufe of the fimilar triangles $C P M, P Z T$ and $R Z Q$ we thall have $C P^{2}$ to $P M^{2}$ as $P R^{2}$ to $Q T^{2}$; and, from the nature of the circle, $P R^{2}$ is equal to the reftangle $Q R \times \overline{R N-1 Q N}$, or the points P, Q coinciding, to the reCangle $Q R \times 2 P M$. Therefore $C P^{2}$ is to $P M^{2}$ as $Q R \times 2 P M$ to $Q T^{2}$; and $\frac{Q T^{2}}{Q R}=$ $\frac{2 P M^{3}}{C P^{2}}$, and $\frac{Q T^{2} \times S P^{2}}{Q R}=\frac{2 P M^{3} \times S P^{2}}{C P^{2}} \cdot$ And therefore (by corol. 1. and 5. prop. 6.) the centripetal force is reciprocally as $\frac{2 P M^{3} \times S P^{7}}{C P^{2}}$; that is, (neglecting the given ratio $\frac{2 S P^{2}}{C P^{2}}$) reciprocally as $P M^{2}$. Q. E. I.

And the fame thing is likewife eafily inferred from the preceding Propoftion.

Scholium.

And by a like reafoning, a body will be moved in en ellipfis, or even in an hyperbola, or parabola, by a centripetal force which is reciprocally as the cube of the ordinate directed to an infinitely remote centre of force.

Proposition IX. Problem IV.
If a body revolves in a fpiral PQS , cutting all the radii S P, SQ. Ef. in a given angle: it is proposed to find the lawe of the centripetal force tending to the centre of that /piral. Pl. 3. Fig. 6.

Suppofe the indefnitely fmall angle $F S Q$ to be given; becaufe then all the angles are given, the figure $S P R Q T$ will be given in (pecie. Therefore the ratio $\frac{Q T}{Q R}$ is alfo given, and $\frac{Q T^{2}}{V^{R}}$ is as $Q T$, that is (becaufe the figure is given in (pecie) as $S P$. But if the angle $P S Q$ is any way changed, the right line $Q R$, fubtending the angle of contact $Q P R$, (by lem. 11.) will be changed in the duplicate ratio of $P R$ or $Q T$. Therefore the ratio $\frac{Q T^{2}}{Q R}$. remains the fame as before, that is as $S P$. And $\frac{Q T^{2} \times S P^{2}}{Q R}$ is as $S P^{3}$, and therefore (by corol. x. and ς. prop. σ.) the centripetal force is reciprocally as the cube of the diftance $S P: Q \cdot E . K$.

Sect. II. of Natural Pbilcfophy.
The fame otherwife.
The perpendicular $S X$ let fall upon the tangent, and the chord $P V$ of the circle concentrically cutting the firal are in given ratio's to the height $S P$; and therefore $S P^{3}$ is as $S T^{2} \times P V$, that is (by corol. ${ }_{3}$. and 5. prop. б.) reciprocally as the centripetal force.

Lemma XII.

All parallelograms circumscribed about any conjugate diameters of a given ellipfis or byperbola are equal among tbemfelves.

This is demonftrated by the writers on the conic fections.

Proposition X. Problem V. If a boly revolves in an ellipfis: it is propofed to find the lave of the centripetal force tending to the centre of the cllipfis. Pl. 4. Fig. I.

Suppofe $C A, C B$ to be femi-axes of the ellipfis; $G P, D K$ conjugate diameters; $P F, Q T$ perpendiculars to thofe diameters; $Q v$ an ordinate to the diameter $G P$; and if the parallelogram $Q v P R$ be compleated; then (by the properties of the conic feetions) the rectangle $P v G$ will be to $Q v^{2}$ as $P C^{2}$ to $C D^{2}$, and (becaufe of the fimilar triangles $Q \vee T$, $P C F) Q v^{2}$ to $Q T^{2}$ as $P C^{2}$ to $P F^{2}$; and by compofition, the ratio of $P v G$ to $Q T^{2}$ is compounded of the the ratio of $P C^{2}$ to $C D^{2}$ and of the ratio of $P C^{2}$ to $P F^{2}$, that is, $v G$ to $\frac{Q T^{2}}{P v}$ as $P C^{2}$ to $\frac{C D^{2} \times P F}{P C^{2}}$. Put $Q R$ for $P v$, and (by lem. 12.) $B C \times C A$ for $C D \times P F$, alfo (the points P and Q coinciding,) $2 P C$ for $v G$; and multiplying the extremes and means togecher, we hall have $\frac{Q T^{2} \times P C^{2}}{Q R}$ equal to $\frac{2 B C^{2} \times C A^{2}}{P C}$. Therefore (by cor. 5. prop. б.) the centripetal force is reciprocally as $\frac{2 B C^{2} \times C A^{2}}{P C}$; that is (becaufe $2 B C^{2} \times C A^{2}$ is given) reciprocally as $\frac{1}{P C}$; that is, direetly as the diftance $P C$. Q.E.I.

The fame otherzeife.
In the right line $F G$ on the other fide of the point T, take the point u fo that $T u$ may be equal to $T v$; then take $n V$, fuch as thall be to $v G$ as $D C^{2}$ to $P C^{2}$. And becaufe $Q v^{2}$ is to $P v G$ as $D C^{2}$ to $P C^{2}$, (by the conic feetions) we fhall have $C v^{2}=P v \times u V$. Add the reftangle $\boldsymbol{P} P v$ to both fides, and the fquare of the chord of the are $P Q$ will be equal to the retangle $V P v$; and therefore a circle, which touches the conic fection in P, and paffes thro' the point Q, will pafs alfo thro' the point V. Now let the points P and Q meet, and the ratio of $u V$ to $v G$, which is the fame with the ratio of $D C^{2}$ to $P C^{2}$, will become the ratio of $P V$ to $P G$ or $P V$ to $2 P C$; and therefore $P V$ will be equal to $\frac{2 D C^{2}}{P C} .$, And therefore the force, by which the body P recolves in the ellipfis, will be reciprocally as z $D G^{2}$

Plate III. 1ol.I. P. -6.

Sect. II. of Natural Philofopby.
$\frac{2 D C^{2}}{P C} \times P F^{2}$ (by cor. 3. prop. 6.) that is, (becaule $2 D C^{2} \times P F^{2}$ is given) directly as $P C$. Q.E. I.
Cor. i. And therefore the force is as the diftance of the body from the centre of the ellipfis; and vice verfa if the force is as the diftance, the body will move in an ellipfis whofe centre coincides with the centre of force, or perhaps in a circle into which the ellipfis may degenerate.
Cor. 2. And the periodic times of the revolutions made in all ellipfes whatfoever about the fame centre will be equal. For thofe times in fimilar ellipfes will be equal (by corol. 3 and 8 . prop. 4.) but in ellipfes that have their greater axe common, they are one to another as the whole areas of the ellipfes diretly, and the parts of the areas defribed in the fame time inverfely; that is, as the leffer axes direatly, and the velocities of the bodies in their principal vertices inverfely; that is, as thofe leffer axes directly, and the ordinates to the famepoint of the common axis inverfely; and therefore (becaufe of the equality of the diret and inverfe ratio's) in the ratio of equality.

> Scholium:

If the ellipfis by having its centre rernoved to an infinite diffance degenerates into a parabola, the body will move in this parabola ; and the force, now tending to a centre infinitely remote, will become equable. Which is Galikeo's theorem. And if the parabolic fection of the cone (by changing the inclination of the cutting plane to the cone) degenerates into an hyperbola, the body will move in the perimeter of this hyperbola, having its centripeal force changed into a centrifugal force. And in like manner as in the circle, circle, or in the ellipfis, if the forces are directed tothe centre of the figure placed in the abrcifa, thofe forces by increafing or diminifhing the ordinates in any given ratio, or even by changing the angle of the inclination of theordinatesto the abriffla, are always augmented or diminimed in the ratio of the diffances from the centre; provided the periodic times remain equal ; fo alfo in all figures whatroever, if the ordinates are augmented or diminifhed in any given ratio, or their inclination is any way changed, the periodic time remaining the fame; the forces diretted to any centre placed in the abfriffa, are in the feveral ordinates augmented or diminifhed in the ratio of the diftances from the centre.

QECTEN

Section III.

Of the motion of bodies in eccentric Conic fections.

Proposition XI. Problem VI. If a body revolves in an ellipfis: it is required to find the lawe of the centripetal force tending to the focus of the ellipfis. Pl. 4. Fig. 2.

Let S be the focus of the ellipfis. Draw $S P$ cutting the diameter $D K$ of the ellipfis in E, and the ordinate $Q v$ in x; and compleat the parallelogram $Q \times P R$. It is evident that $E P$ is equal to the greater $\mathrm{fe}-$ mi-axis $A C$: for drawing $H I$ from the other focus H of the ellipfis parallel to $E C$, becaufe $C S, C H$ are equal $E S, E I$ will be alfo equal, fo that $E P$ is the half fum of $P S, P I$, that is, (becaufe of the parallels $H I, P R$, and the equal angles $I P R, H P Z$) of IS,$P H$, which taken together are equal to the whole axis $2 A C$. Draw $Q T$ perpendicular to $S P$, and putting L for the principal latus rectum of the ellipfis (or for $\frac{2 B C^{2}}{A C}$, we thall have $L \times Q R$ to $L \times P v$
$L \times P v$ as $Q R$ to $P v$, that is, as $P E$ or $A C$ to $F C$; and $L \times P v$ to $G v P$ as L to $G v$; and $G v P$ to $Q v^{2}$ as $P C^{2}$ to $C D^{2}$; and (by corol. 2. lem. 7.) the points Q and P coinciding, $Q v^{2}$ is to $Q x^{2}$ in the ratio of equality ; and $Q x^{2}$ or $Q v^{2}$ is to $Q T^{2}$ as $E P^{2}$ to $P F^{2}$, that is, as $C A^{2}$ to $P F^{2}$ or (by lem. 12.) as $C D^{2}$ to $C B^{2}$. And compounding all thofe ratio's together, we fhall have $L \times Q R$ to $Q \boldsymbol{T}^{2}$ as $A C \times L \times$ $P C^{2} \times C D^{2}$ or $2 C B^{2} \times P C^{2} \times C D^{2}$ to $H C \times G v$ $\times C D^{2} \times C B^{2}$, or as $2 P C$ to $G v$. But the poitrts Q and P coinciding, $2 P C$ and $G v$ are equal. And therefore the quantities $L \times Q R$ and $Q T^{2}$, proportional to thefe, will be alfo equal. Let thofe equals be drawn into $\frac{S P^{2}}{Q R}$, and $L \times S P^{2}$ will become equal to $\frac{S P^{2} \times Q T^{2}}{Q R} \cdot$ And therefore (by corol. 1. and 5. prop. 6.) the centripetal force is reciprocally as $L x$ $S P^{2}$, that is, reciprocally in the duplicate ratio of the diftance $S P$. Q.E.I.

The fame otherwife.
Seeing the force tending to the centre of the ellipfis, by which the body P may revolve in that eilipfis, is (by corol. x. prop. 10.) as the diftance $C P$ of the body from the centre C of the ellipfis; let $C E$ be drawn parallel to the tangent $P R$ of the ellipfis; and the force, by which the fame body P may revolve about any other point S of the ellipfis, if $C E$ and $P S$ interfect in E, will be as $\frac{P E^{3}}{S P^{2}}$ (by cor. 3. prop. 7.) that is, if the point S is the focus of the ellipfis, and therefore $P E$ be given, as $S P^{2}$ reciprocally. Q.E.I.

With

SECT. III. of Natural Philoforthy.

Wirh the fame brevity with which we reduced the fifth problem to the parabola and hyperbola, we might do the like here: But becaufe of the dignity of the problem and its ufe in what follows, I hall confirm the other cafes by parcicular demonfrations.

Proposition XII. Problem VII-

Suppore a body to move in an biperbola : it is reguired to find the laze of the centripetal force tending to the focus of that figure. Pl. 5. Fig. 1.

Let $C A, C B$ be the femi-axes of the hyperbola; $P G, K D$ other conjugate diameters ; $P F$ a perpendicular to the diameter $K D$; and $Q v$ an ordinate to the diameter $G P$. Draw $S P$ cutting the diameter $D K$ in E, and the ordinate $Q v$ in x, and compleat the parallelogram $Q R P x$. It is evident that $E P$ is equal to the femi-tranfverfe axe $A C$; for, drawing $H I$, from the other focus H of the hyperbola, parallel to $E C$, becaufe $C S, C H$ are equal, $E S, E I$ will be alfo equal; fo that $E P$ is the half difference of $P S, P I$; that is, (becaure of the parallels $I H, P R$, and the equal angles $I P R, H P Z$) of $I S, P H$, the difference of which is equal to the whole axis $2 A C$. $D_{\text {raw }} Q T_{\text {perpendicular to }} S P$. And putting L for the principal latus rectum of the hyperbola, (that is, for $\left.\frac{2 B C^{2}}{A C},\right)$ we thall have $L \times Q R$ to $L \times I v$ as $Q R$ to $P v$; or $P x$ to $P v$, that is, (becaufe of the fimilar triangles $P \times v, P E C$) as $P E$ to $P C$, or $A C$ to $P C$. And $L \times P \boldsymbol{v}$

S2 Matheriaticni Principes Book I. $L \times P v$ will be to $G v \times P v$ as L to $G v$; and (iy the properties of the conic fections) the rectangle $G v$? is to φv^{2} as $P C^{2}$ to $C D^{2}$; and (by cor.2. lem. 7.) $Q v^{2}$ to $Q x^{2}$, the points Q and P coinciding, becomes a ratio of equality; and $Q x^{2}$ or $Q v^{2}$ is to $Q T^{2}$ as $E P^{2}$ to $P F^{2}$, that is, as $C A^{2}$ to $P F^{2}$, or (by lem. 12.) as $C D^{2}$ to $C B^{2}$: and, compounding all thofe ratio's together, we fhall have $L \times Q R$ to $C T^{2}$ as $A C \times L \times P C^{2} \times C D^{2}$ or $2 C B^{2} \times P C^{2}$ $\times C D^{2}$ to $P C \times G v \times C D^{2} \times C B^{2}$, or as $2 P^{\prime} C$ to $G v$. But the points P and Q coinciding, $2 P C$ and $G v$ are equal. And therefore the quantities $L \times Q R$ and $Q T^{2}$, proportional to them, will be alfo equal. Let thofe equals be drawn into $\frac{S P^{2}}{Q R}$, and we fhall have $L \times S P^{2}$ equal to $\frac{S P^{2} \times Q T^{2}}{Q R}$. And therefore (by cor. 1 \& 5 . prop. 6.) the centripetal force is reciprocally as $L \times S P^{2}$, that is, reciprocally in the duplicate ratio of the diftance $S P . \quad$ C.E.I.

The fanze othervife.

Find out the force tending from the centre C of the hyperbola. This will be proportional to the diftance C P. But from thence (by cor. 3. prop. 7.) the force tending to the focus S will be as $\frac{P E^{3}}{S P^{2}}$, that is, becaufe $P E$ is given, reciprocally as $S P^{2}$. Q. E. I.

And the fame way it may be demonftrated, that the body having its centripetal changed into a centrifugal force, will move in the conjugate hyperbola.

Lemma

Sect. III. of Natirai Philofoph. 83

Lemma XIII.

The la'us rectun of a paralola belonsing to any vertex is quadrutle the diftance of that vertex fions the focus of the figare.

This is demonftrated by the writers on the conic fections.

Lemma XIV.

The perpendicular let fall fom the focus of a paratol.a on its tangent, is a mean proportional betzecenthe difances of the focus from the point of contalt, and from the princifal vertex of the figure. Pl. 5. Fig. 2.

For, let $A P$ be the parabola, S iss focus, A its principal vertex, P the point of contact, $P O$ an ordinate to the principal diameter, $P M$ the tangent meeting the principal diameter in M, and $S N$ the perpendicular from the focus on the tangenc. Join $A N$, and becaufe of the equal lines $M S$ and $S P, M N$ and $N P, M A$ and $A O$; the right lines $A N, O P$, will be parallel; and thence the triangle $S A N$ will be right angled at A, and fimilar to the equal triangles $S N M, S N P$: therefore $P S$ is to $S N$ as $S N$ to SA. Q. E. D.

Cor. i. $P S^{2}$ is to $S N^{2}$ as $P S$ to $S A$.

$$
G_{2} \quad C o r .
$$

84 Mathematical Princitles Brok 1 .
Cor. 2. And becaufe $S A$ is given, $S N^{2}$ will be as $P S$.

Cor. 3. And the concourfe of any tangent $P M$ with the right line $S N$, drawn from the focus perpendicular on the tangent, falis in the right line $A N$, that touches the parabola in the principal vertex.

Proposition XIII. Problem VIII.
If a lody moves in the perimeter of a praaLola: it is required to find the lave of the centripetal force tending to the focus of that figure. Pl. 5. Fig. 3.

Retaining the conftruction of the preceding lemma, let P be the body in the perimeter of the parabola; and from the place Q, into which it is next to fucceed, draw $Q R$ parallel and $Q T$ perpendiccilar to $S P$, as allo $Q v$ parallel to the tangent, and meeting the diameter $I G$ in v, and the diftance $S P$ in \boldsymbol{x}. Now, becaufe of the fimilar triangles $P x v, S P M$, and of the equal fides $S P, S M$ of the one, the fides $P x$ or $Q R$ and $P v$ of the other will be alfo equal. But (by the conic fections) the fquare of the ordinate $Q v$ is equal to the rectangle under the latus reCtum and the fegment $P v$ of the diameter, that is, (by lem. 1j.) to the rectangle $4 P S \times P v$, or $4 F S \times Q R$; and the points P and Q coinciding, the ratio of $Q v$ to $Q x$ (by cor. 2 , lem. 7.) becomes a ratio of equality: And therefore $Q x^{2}$, in this cafe, becomes equal to the rectangle $4 P S \times Q R$. But (becaufe of the fimilar triangles $(x T, S P N) Q x^{2}$ is to $O T^{2}$ as $P S^{2}$ to $S N^{2}$, that is (by cor. 1. lem. 14.) as $P S$ to $S A$; that is, as $4 P S \times Q R$ to $4 S A \times \cup R$, and therefore

Sect. II. of Natural whilofoph.
boy prop. 9. lib. 5. elem.) $Q T^{2}$ and $4 S A \times Q R$ are equal. Multiply there equals by $\frac{S P^{2}}{\left\langle R^{2}\right.}$, and $\frac{S P^{2} \times Q T^{2}}{Q R}$ will become equalto $S \dot{P}^{2} \times 4 S A$ and therefore (by cor. r. and 5. prop. 6.) the centripetal force is reciprocally as $S P^{2} \times 4 S A$; that is, becaufe $4 S A$ is given, reciprocally in the duplicate ratio of the diffance S F. O, E.I.
Cor. r. From the three laft propofitions it follows, that if any body P gocs from the place P with any velociry in the direction of any right line $P \boldsymbol{R}$ and at the fame time is urged by the attion of a centripetal force, that is reciprocally proportional to the Square of the diftance of the places from the centre; the body will move in one of the conic feations, having its focus in the centre of force ; and the contrary. For the focus, the point of contat, and the pofition of the tangent being given, a conic fection may be defrribed, which at that point hall have a given curvature. But the curvarure is given from the centripetal force and the bodies velocity given: and two orbits mutually touching one the other, cannot be defrribed by the fame centripetal force and the fame velocity.
Cor. 2. If the velocity, with which the body goes from its place P, is fuch, that in any infinitely fmall moment of time the lineola $P R$ may be thereby defribed; and the centripetal force fuch as in the fame time to move that body through the fpace $Q R$; the body will move in one of the conic feetions, whofe principal latus rectum is the quantity $\frac{Q T^{2}}{Q R}$ in its ultimate flate, when the lineolx $P R, Q R$ are

$$
G_{3} \quad \operatorname{dimi}
$$ der the circle as an ellipfis; and I except the care, where the body defcends to the centre in a right line.

Proposition XIV. Theorem Vi. $1 f$ feveral lodies revolve aloat one common centre, and the centrifetal force is reciprocaliy in the divtlicate ratio of the difance of tlaces fiom the centre; I fay, that the principal latera recia of their orbits are in the dutlicate ratio of the area's, wobich the lodies ly radii drawn to the centre defcrile iat the jame time. Pl. 6. Fig. I.

For (by cor. 2. prep. 13.) the latus reftum L is
 the points P and Q coincide. But the lineo:a $Q R$ in a given time is as the generating centripetal force; that is (by fuppofition) reciprocally as $S P^{2}$. And therefore $\frac{Q T^{2}}{Q R}$ is as $Q T^{2} \times S P^{2}$, that is, the larus reflum L is in the duplicateratio of the area $Q T \times S r$. C. E. D.

Cor. Hence the whole area of the ellipfis, and the rectangle under the axes, which is proportional to it, is in the ratio compounded of the fubduplicate ratio of the latus rectum, and the ratio of the periodic time. For the whole area is as the area $\mathcal{C} T \times S I$, defcibed in a given time, multiplied by the periodic tims.

Pro.

Plate V. I I.I. Pso.

Proposition XV. Theorem VII.
The fame things being fuppofed, I fay that the periodic times in elliffes are in the Sefquiplicate ratio of their greater axes.

For the lefter axe is a mean proportional between the greater axe and the latus reQum; and therefore the rectangle under the axes is in the ratio compounded of the fubduplicate ratio of the flatus rectum and the fefquiplicate ratio of the greater axe. But this rectangle (by cor. prop. 14.) is in a ratio compounded of the fubduplicate ratio of the latus rectum and the rario of the periodic time. Subduct from both fides the fubduplicate ratio of the latus rectum, and there will remain the fefquiplicate ratio of the greater axe, equal to the ratio of the periodic time. Q.E.D,
Cor. Therefore the periodic times in ellipfes are the fame as in circles whole diameters are equal to the greater axes of the ellipfes.

Proposition XVI. Theorem VIII.

The fame things being supposed, and right lines being drazen to the bodies that foll touch the orbits, and perpendiculars being let fall on thole tangents from the common focus: I fay that the velocities of the bodies are in a ratio compounded of the ratio of the perpendiculars inversely, and the fubduppli-
G_{4}
cate cate ratio of the principal latera rect a directly. PI. 6. Fig. 2.

From the focus S, draw $S T$ perpendicular to the tangent $P R$, and the velocity of the body P will be reciprocally in the fubduplicate ratio of the quantity $\frac{S r^{2}}{L}$. For that velocity is as the infinitely fmall are $P Q$ defcribed in a given moment of time, that is, (by lem. 7.) as the tangent $P R$; that is, (becaufe of the proportionals $P R$ to $Q T$ and $S P$ to $S V$ as $\frac{S P \times Q T}{S r}$, or as $S T$ reciprocally and $S P \times Q T$ direEtly ; but $S P \times Q T$ is as the area defcribed in the given time, that is (by prop. 14.) in the fubduplicate ratio of the latus rectum. Q.E.D.

Cor. 1. The prine pal latera recta are in a ratio compounded of the duplicate ratio of the perpendiculars and the duplicate ratio of the velocities.

Cor.2. The velocities of bodies, in theirgreateft and leaft diftances from the common focus, are in the rario compounded of the ratio of the diftances inverfely, and the fubduplicate ratio of the principal latera recta direetly. For thofe perpendiculars are now the diftances.

Cor. 3. And therefore the velocity in a conic fection, at its greateft or leaft diftance from the focus, is to the velocity in a circle at the fame diftance from the centre, in the fubduplicate ratio of the principal latus rectum to the double of that diftance.

COR. 4. The velocities of the bodies revolving in ellipfes, at their mean diftances from the common focus, are the fame as thofe of bodies revolving in circles, at the fame diftances ; that is (by cor. 6. prop. 4.) reciprocally in the fubduplicate ratio of the diftances.

Sect. III. of Natural Pbilooophy. 89
For the perpendiculars are now the leffer femi-axes, and thefe are as mean proportionals between the diftances and the latera recta. Let this ratio inverfely be compounded with the fubduplicate ratio of the h_{2} tera recta directly, and we fhall have the fubduplicate ratio of the diftances inverfely.

Cor.g. In the fame gigure, or even in different figures, whofe principal latera retta are equal, the velocity of a body is reciprocally as the perpendicular let fall from the focus on the tangent.

Cor. б. In a parabola, the velocity is reciprocally in the fubduplicate ratio of the diftance of the body from the focus of the figure ; it is more variable in the ellipfis, and lefs in the hyperbola, than according to this ratio. For (by cor. 2. lem. 14.) the perpendicular let fall from the focus on the tangent of a parabola is in the fubduplicate ratio of the diftance. In the hyperbola the perpendirular is lefs variable, in the ellipfis more.
Cor. 7. In a parabola, the velocity of a body at any diflance from the focus, is to the velocity of a body revolving in a circle at the fame diflance from the centre, in the fubduplicate ratio of the number 2 to 1 ; in the ellipfis it is lefs, and in the hyperbola greater, than according to this ratio. For (by cor. 2. of this prop.) the velocity at the vertex of a parabola is in this ratio, and (by cor. σ. of this prop. and prop. 4.) the (ame proportion holds in all diffances. And bence alfo in a parabola, the velocity is every where equal to the velocity of a body revolving in a circle at half the diftance; in the ellipfis it is lefs, and in the hyperbola greater.

Cor:

Cor. 8. The velocity of a body revolving in any conic fection is to the velocity of a body revolving in a circle at the diftance of half the principal latus rectum of the fection, as that diftance to the perpendicular let fall from the focus on the tangent of the fection. This appears from cor. 5 -

Cor. 9. Wherefore fince (by cor. 6. prop. 4.) the velocity of a body revolving in this circle is to the velocity of another body revolving in any other circle, reciprocally in the fubduplicate ratio of the diftances; therefore ex aqua the velocity of a body revolving in a conic fection will be to the velocity of a body revolving in a circle at the fame diftance, as a mean proportional between that common diftance and half the principal latus rectum of the fection, to the perpendicular let fall from the common focus ufon the tangent of the fection.

Proposition XVII. ProblemIX.

Suptoling the centrifetal force to be reciprocally proportional to the fiuares of the diffances of tlaces from the centre, and that the alfolute quantity of that force is known; it is required to determine the line, zehich a lindy weill defcribe that is let go from a fiven tlace with a given velocity in the directon of a given right line.

Let the centripetal force tending to the point S (Pl. 6. Fig. 3.) be fuch, as will make the body p revolve in any given orbit $p g$; and fuppofe the velocity of this body in the place p is known. Then from the place P, fuppofe the body P to be let go with a given velocity

Sect. III. of Natural Pbilofophy.
locity in the direction of the line $P R$; but by virtue of a centripetal force to be immediately turned afide from that right line into the conic fetion $P Q$. This the right line $P R$ will therefore touch in P. Suppofe likewife that the right line pr touches the orbit $p q$ in $p{ }^{*}$; and if from S you fuppofe perpendiculars let fall on thofe tangents, the principal latus refum of the conic feetion (by cor. 1. prop. 16.) will be to the principal latus rectum of that orbit, in a ratio compounded of the duplicate ratio of the perpendiculars and the duplicate ratio of the velocities; and is therefore given. Let this latus r. Aum be L. The focus S of the conic fection is allo given. Let the angle $R P H$ be the complement of the angle $R P S$ to two right ; and the line $P H$, in which the other focus \boldsymbol{H} is placed, is given by pofition. Let fail $S K$ perpendicular on $P H$, and ereet the conjugate femi-2xe $B C$; this done, we fhall have $S P^{2}-2 K P H-P H^{2}=S H^{2}$
$=4 C H^{2}=4^{B} H^{2}-4^{B} C^{2}=\widehat{S P-P H^{2}}$ $L^{\times} \overline{S P-1-P H}=S P^{2}-1-2 S P H-1-P H^{2}-L$ $\times S P-P H$. Add on boch fides $2 K P H-S P^{2}$ $P H^{2}-1 L \times \overline{S P-1} P \bar{F}$, and we fhall have $L \times$ $\overline{S+P} H=2 S P H-2 K P H$, or $S P$ - $-P H$ to $P H$ as $2 S P+2 K P$ to L. Whence $P H$ isgiven both in length and pofition. That is, if the velocity of the body in P is fuch that the latus rectum L is lefs than $2 S P-1-2 K F, P H$ will lie on the fame fide of the tangent $P R$ with the line $S P$; and therefore the figure will be an ellipfis, which from the given foci S, H, and the principal axe $S P-1-P H$, is given allo, But if the velocity of the body is fo great, that the latus reetum L becomes equal to $2 P S-12 K P$, the lengeth $P H$ will be infinite; and therefore the figure will be a parabola, which has its axe $S H$ parallel to
the line $P K$, and is thence given. But if the body goes from its place P with a yet greater velocity, the length $P H$ is to be taken on the ofher fide the tangent; and fo the tangent paffing between the foci, the figure will be an hyperbola having its principal axe equal to the difference of the lines $S P$ and $P H$, and thence is given. For if the body, in thefe cafes, revolves in a conic fection fo found, it is demonftrated in prop. 11, 12, and 13. that the centripetal force will be reciprocally as the fquare of the diftance of the body from the centre of force S; and therefore we have rightly derermined the line $P Q$, which a body let go from a given place P with a given velocity, and in the direction of the right line $P R$ given by pofition, would defrribe with fuch a force. Q.E.F.

Cor. i. Hence in every conic fection, from the principal vertex D, the latus rectum L, and the focus S given, the other focus H is given, by taking $D H$ to $D S$ as the latus reCtum to the difference between the latus recturl and $4 D S$. For the proportion, $S P-1-$ $P H$ to $P H$ as $2 P S-1-2 K P$ to L, becomes, in the cafe of this corollary, $D S-1-D H$ to D as $_{4} D S$ to L, and by divifion $D S$ to $D H$ as $4 D S-L$ to L.

Cor. 2. Whence if the velocity of a body in the principal vertex D is given, the ortit may be readily found; to wit, by taking is latus rectum to twice the diftance $D S$, in the duplicate ratio of this given velocity to the velocity of a body revolving in a circle at the diftance DS (by cor. 3. prop. 16.) and then taking $D H$ to $D S$ as the latus rectum to the difference berween the latus rectum and $4 D S$.

Cor. 3. Hence alfo if a body move in any conic fection, and is forced out of its obit by any impulfe; you may difcover the orbit in which

Sect. III. of Natural Philofophy. 93
which it will aferwards purfue its courfe. For by compounding the proper motion of the body with that motion, which the impulfe alone would generate, you'll have the motion with which the body will go off from a given place of impulfe, in the direttion of a right line given in pofition.
Cor. 4. And if that body is continually difturbed by the action of fome foreign force, we may nearly know its courfe, by collecting the changes which that force introduces in fome points, and eftimating the continual changes it will undergo in the intermediate places, from the analogy that appears in the progrefs of the feries.
SCHOLIUM.

If a body P (Pl. 6. Fig. 4.) by means of a centripetal force tending to any given point R move in the perimeter of any given conic fetion, whofe centre is C; and the law of the centripetal force is required: $D_{\text {raw }} C G$ parallel to the radius $R P$, and meeting the tangent $P G$ of the orbit in G; and the force required (by cor. 1. \& fchol. prop. 10. \& cor. 3. prop. 7.) will be as $\frac{C G^{3}}{R P^{2}}$.,

Section IV.

Of the finding of clliptic, parabolic, and byperbolic orbits, from the focus given.

Lemma XV.

If from the two foci S, H, (Pl. 7. Fig. i.) of any ellipfis or hyperlola, zee draze to any third point V the right lines S V, HV , whereof one HV is equal to the principal axis of the figure, that is, to the axis in which the foci are fituated, the other S V is bifected in T by the perpendicular T R let fall upon it; that perpendicular TR zeill fomezebere touch the conic Section: and vice verfa, if it does touch it, H V reill be equal to the principal axis of the figure.

For, let the perpendicular $T R$ cut the right line $H V$, produced if need be, in R; and join $S R$. Becaule

Plate.V.Iol.I.P.g4.

Sect. IV. of Natural Pbilofoph.r.
caufe $T S, T V$ are equal, therefore the right lines $S R$, $V R$, as well as the angles $T R S, T R V$, will be alfo equal. Whence the point R will be in the conic fection, and the perpendicular $T R$ will touch the fame : and the contrary. Q.E.D.

Proposition XVIII. Problem X.

From a focus and the principal axes given, to defcrile elliptic and byperiolic trajectories, waich foall fars through given points, and touch right lines given by fofition. Pl. 7. Fig. 2.

Let S be the common focus of the figures; $A B$ the length of the principal axis of any trajectory ; P a point through which the trajeftory fhould pafs; and $T R$ a right line which it fhould touch. About the centre P, with the interval $A B-S P$, if the orbit is an ellipfis, or $A B+S P$ if the orbit is an hyperbola, defcribe the circle $H \mathcal{G}$. On the tangent $T R$ let fall the perpendicular $S T$, and produce the fame to V, fo that $T V$ may be equal to $S T$; and about V as a centre with the interval $A B$ defribe the circle $F H$. In this ma:ner whether two points P, p, are given, or two tangensts $T R, t r$, or a point P and a tangent $T R$, we are to defcribe two circles. Let \boldsymbol{H} be their common interfection, and from the foci $\mathcal{S , H}$ with the given axis defcribe the trajequory. I fay the thing is done. For (because $P H-S P$ in the ellipfis, and $P H-S P$ in the hyperbola is equal to the 2xis) the defrribed trajeftory will pafs through the point P, and (by the preceding lemma) will touch the right line $T R$. And by the fame argument it will will either pafs through the two points P, p, or touch the two right lines $T R, t$. Q.E.F.

Proposition XIX. Problem. XI.
cAlout a given focus, to defcribe a paralo. lic trajectiory, which flall pafs through given points, and touch right lines given by pofition. Pl. 7. Fig. 3.

Let S be the focus, P a point, and $T R$ a tangent of the trajectory to be defcribed. About P as a centre, with the interval $P S$, defcribe the circle $F G$. From the focus let fall $S T$ perpendicular on the tangent, and produce the fame to V, fo as $T V$ may be equal to $S T$. After the fame manner another circle $f g$ is to be defrribed, if another point p is given; or another point v is to be found, if another tangent $e r$ is given; then draw the right line $I F$, which fhall touch the two circles $F G, f g$, if two points P, p are given, or pals through the two points V, v_{3} if two tangents $T R, t r$ are given, or touch the circle $F G$ and pafs through the point V, if the point P and the tangent $T R$ are given. On $F I$ let fall the perpendicular $S I$, and bifeet the fame in K; and with the axis $S K$, and principal vertex K defcribe a parabola. I fay the thing is done. For this parabola (becaufe $S K$ is equal to $I K$, and $S P$ to $F P$) will pafs through the point P; and (by cor. 3. lem. 14.) becaufe $S T$ is equal to $T V$, and $S T R$ a right angle, it will touch the right line $T R_{0}$. $Q_{-E} F_{\text {. }}$

Proposition XX. Problem XII:
About a given focus to defcribe any trajectory given in /pecie, which 乃pall pafstbro' given points and touch right lines given by polition.

Case i. About the focus S (Pl. 7. Fig. 4.) it is required to defrribe atrajectory $A B C$, palfing thro two points B, C. Becaufe the trajectory is given in fpecie, the ratio of the principal axe to the diffance of the foci will be given. In that ratio take $K B$ to $B S$ and $L C$ to $C S$. About the centres B, C, with the intervals $B K, C L$ deffribe two circles, and on the right line $K L$, that touches the fame in K and L, let fall the perpendicular $S G$; which cut in A and a, fo that $G A$ may be to $A S$, and G ato a S, as $K B$ to $B S$; and with the axe $A a$, and vertices A, a, defrribe a trajeCtory. I fay the thing is done. For let H be the other focus of the defrribed figure, and feeing $G A$ is to $A S$ as G a to $a S$, then by divifion we fhall have $G a-G A$ or Aa to a $S-A S$ or $S H$ in the fame ratio, and therefore in the ratio which the principal axe of the figure to be defcribed has to the diftance of its foci; and therefore the defrribed figure is of the fame fecies with the figure which was to be defrribed. And fince $K B$ to $B \mathcal{S}$, and $L C$ to $C S$ are in the fame ratio, this figure will pars thrö' the points B, C, as is manifeft from the conic feetions:

Case 2. About the focus S (Pl. 7. Fig. 5.) it is required to defrribe a trjeetory, which fhall fomewhere touch two right lines $T R, t r$. From the focus on thofe tangents let fall the perpendiculars $S T, S$,
H which
which produce to V, v, fo that $T V, t v$ may be equal to $T S$, i S. Bifect $V v$ in O, and erect the indefinite perpendicular $O H$, and cut the right Line $V S$ infinitely produced in K and k, fo that $V K$ be to $K S$, and $V k$ to $k S$ as the principal axe of the trajectory to be deferibed is to the diflance of it's foci. On the diameter $k k$ defcribe a circle cutting $O H$ in H; and with the foci S, H, and principal axe equal to $V H$, defcribe a trajectory. I fay the thing is donc. For, bifecting $K k$ in X, and joining $H X, H S, H V, H v$, becaufe $V K$ is to $K S$, as $V k$ to $k S$; and by compofition, as $V K-V k$ wo $K S_{-1} k S$; and by divifion, os $V k-V K$ to $k S-K S$, that is, as $2 V X$ to $2 K X$ and $2 K X$ to $2 S X$, and therefore as $V X$ to $H X$ and $H X$ to $S X$, the triangles $V X H$, $H X S$ will be fimilar ; Therefore $V H$ will be to $S H$, as $V X$ to $X H$; and therefore as $V K$ to $K S$. Wherefore $V \boldsymbol{H}$ the principal axe of the defcribed trajectory has the fame ratio to $S H$ the diftance of the foci, as the principal axe of the trajectory which was to be defcribed has to the diftance of its foci; and is therefore of the fame fpecies. Ard feeing $V \mathrm{H}, \mathrm{vH}$, are equal to the principal axe, and $V S, v S$ are perpendicularly bifected by the right lines $T R, t r$; 'tis evident (by lem. 15.) that thofe right lines touch the defcribed trajectnry. Q. E.F.

Case 3. About the focus S (Pl. 7. Fig. 6.) it is required to defcribe a trajectory, which fhall touch a right line $T R$ in a given point R. On theright line $T R$ let fall the perpendicular $S T$, which produce to V, fo that $T V$ may be equal to $S T$, join $V R$, and cut the right line $V S$ indefinitely produced in K and k, fo that $V K$ may be to $S K$, and $V k$ to $S k$ as the principal axe of the ellipfis to be defribed, to the diffance of its foci ; and on the diameter $K k$ defrribing

Sect. IV of Nataral Philofophy.
Scribing a circle, cut the right line $V R$ produced in H, then with the foci S, H, and principal axe equal to $V H$, defrribe a trajeCtory. I fay the thing is done. For $V H$ is to $S H$ as $V K$ to $S K$, and therefore as the principal axe of the trajectory which was to be defcribed to the diftance of its foci, (as appears from what we have demonftrated in Cafe 2.) and therefore the defcribed trajectory is of the fame fpecies with that which was to be defcribed; but that the right line $T R$, by which the angle $V R S$ is bifected, touches the trajectory in the point R, is certainfrom the properties of the conic fections. O.E.F.

Case 4. About the focus S (Il. 7. Fig. 7.) it is required to defcribe a trajectory $A P B$ that mall touch a right line $T R$, and pafs thro' any given point P without the tangent, and fhall be fimilar to the figure $a p b$, defcribed with the principal axe $a b$, and foci s, b. On the tangent $T R$ let fall the perpendicular $S T$; which produce to V, fo that $T V$ may be equal to $S T$. And making the angles $h s q$, shgequal to the angles $V S P, S V P$; about q as a centre, and with an interval which mall be to $a b$ as $S P$ to $V S$ defcribe a circle cutting the figure $a p b$ in p : join $s p$, and draw $S H$, fuch that it may be to $s h$, as $S P$ is to $s p$, and may make the angle $P S H$ equal to the angle $p s h$, and the angle $V S H$ equal to the angle psg. Then with the foci S, H, and principal axe $A B$ equal to the diftance $V H$, defcribe a conic fection. I fay the thing is done. For if $s v$ is drawn fo that it fhall be to $s p$ as $s b$ is to $s q$, and Thall make the angle vsp equal to the angle $h s q$, and the angle vsh equal to the angle $p s q$, the triangles $s v b$, $s p q$, will be fimilar, and therefore $v h$ will be to $p q$, as $s h$ is to $s q$, that is, (becaufe of the fimilar triangles $V S P$, $h s q$) as $V S$ is to $S P$ or as $a b$ to $p q$. Wherefore H_{2}
$v b$ and $a b$ are equal. But becaufe of the fimilar triangles $V S H, v s h, V H$ is to $S H$ as $v b$ tosh; that is, the axe of the conic fection now defcribed is to the diftance of its foci, as the axe $a b$ to the difance of the foci s, h; and therefore the figure now defcribed is fimilar to the figure ap b. But, becaufe the triangle $P S H$ is fimilar to the triangle $p ; b$, this figure paffes through the point P; and becaufe $V H$ is equal to its axis, and $V S$ is perpendicularly bifected by the right line $T R$, the faid figure touches the right line TR. Q.E.F.

Lemma XVI.

From three given points to draze to a feurth point that is not given three right lines whofe differences fuall be either given or none at all.

CaSE I. Let the given points be A, B, C (Pl.8. Fig. 1.) and Z the fourth point which we are to find; becaufe of the given difference of the lines $A Z$, $B Z$, the locus of the point Z will be an hyperbola, whofe foci are A and B, and whofe principal axe is the given difference. Let that axe be $M N$. Taking $P M$ to $M A$, as $M N$ is to $A B$, erect $P R$ perpendicular to $A B$, and let fall $Z R$ perpendicular to $P R$; then, from the nature of the hyperbola, $Z R$ will be to $A Z$ as $M N$ is to $A B$. And by the like argument, the locus of the point Z will be another hyperbola, whofe foci are A, C, and whofe principal axe is the difference between $A Z$ and $C Z$; and $Q S$ a perpendicular on $A C$ may be drawn, to which $(Q S$) if from any point Z of this hyper-

illate.VII. Iol.I. P.a

v

Sect. IV. of Natural Plitofoptig. 101 bola a perpendicular $Z S$ is let fail, this ($Z S$) fhall be to $A Z$ as the difference berween $A Z$ and $C Z$ is to $A C$. Wherefore the ratio's of $Z R$ and $Z S$ to $A Z$ are given, and confequently the ratio of $Z R$ to $Z S$ one to the other; and therefore it the right lines $R P, S Q$ meet in T, and $T Z$ and $T A$ are drawn, the figure $T R Z S$ will be given in fpecie, and the right line $T Z$, in which the poinr Z is fomewhere placed, will be given in pofition. There will be given alfo the right line $T A$, and the angle $A T Z$; and becaufe the ratio's of $A Z$ and $T Z$ to $Z S$ are given, their ratio to each other is given alfo; and thence will be given likewife the triangle $A T Z$ whofe vertex is the point Z. Q.E.I.

CASE2. If two of the three lines, for example $A Z$ and $B Z$, are equal, draw the right line $T Z$ fo as to bifect the right line $A B$; then find the triangle $A T Z$ as above. Q. E. I.

CASE 3. If all the three are equal, the point Z will be placed in the centre of a circle that paffes thro' the points $A, B, C . Q . E . I$.

This problematic lemma is likewife folved in Apol. lonius's Book of Tactions reftored by Vizta.

Proposition XXI. Problem XIII.
About a given focus to defcrile a trajeciory, that ball pafs through given points and touch right lines given by fofition.

Let the focus $S,($ Pl. 8. Fig. 2.) the point P, and the angent $T R$ be given, and fuppofe that the other focus H is to be found. On the tangent let fall the perpendicular $S T$, which produce to T, fo that $T T$ H 3 may

102 Mathematical Principles Book I. may be equal to $S T$, and γH will be equal to the principal axe. Join $S P, H P$, and $S P$ will be the difference berween $H P$ and the principal axe. After this manner if more tangents $T R$ are given, or more points P, we fhall always determine as many lines $r H$ or $P H$, drawn from the faid poins Y or P, to the focus H, which either hall be equal to the axes, or differ from the axes by given lengths $S P$; and therefore which fhall either be equal among themfelves, or fhall have given differences; from whence (by the preceding lemma) that other focus H is given. But having the foci and the length of the axe (which is either $Y H$; or, if the trajectory be an ellipfis, $P H$ $+S P$, or $P H-S P$ if it be an hyperbola) the trajectory is given. Q. E. I.

> SCHOLIUM.

When the trajectory is an hyperbola, I do not comprehend its conjugate hyperbola under the name of this trajcetory. For a body going on with a continued motion can never pals out of one hyperbola into its conjugate hyperbola.

The cafe when three points are given is more rezdily folved thus. Let $B, C, D(P L .8$. Fig. 3.) be the given points. Join $B C, C D$, and produce them to E, F; fo as E may be to $E C$, as $S B$ to $S C$; and $F C$ to $F D$, as $S C$ to $S D$. On $E F$ drawn and produced let fall the perpendiculars $S G, B H$, and in $G S$ produced indefinitely take $G A$ to $A S$, and $G a$ to $a S$, as $H B$ is to $B S$; then A will be the vertex, and Aa the principal axe of the trajetory: Which, according as $G A$ is greater than, equal to, or lefs than $A S$, will be either an ellipfis, a para-:

Sect. IV. of Natural Písilofophy. 103 bola or an hyperbola; the point a in the firft care falling on the fame fide of the line $G F$ as the point A; in the fecond, going off to an infinite diffance ; in the third, falling on the other fide of the line $G F$. For if on $G F$, the perpendiculars $C I, D K$ are let fall, $I C$ will be to $H B$ as $E C$ to $E B$; that is, as $S C$ to $S B$; and by permutation $I C$ to $S C$ as $H B$ to $S B$, or as $G A$ to $S A$. And, by the like argument, we may prove that $K D$ is to $S D$ in the fame ratio. Wherefore the points B, C, D lie in a conic fection defribed about the focus S, in fuch manner that all the right lines drawn from the focus S to the feveral points of the fection, and the perpendiculars let fall from the fame points on the right line $G F$ are in that given ratio.

That excellent geometer M. De la Hire has folved this problem much after the fame way in his conics, prop, 25 . lib. 8.

H_{4}
Saction

104 Mathematical Principles Book I.

Section V.

How the orbits are to be found wben neitber focus is given.

Lemma XVII.

If from any point P of a given conic Section, to the four produceafides A B, CD, AC, DB of any trapezium ABDC infcribed in that jection, as many right lines P Q, PR, P S, P T are drazen in given angles, each line to each fide; the rectangle $\mathrm{PQ} \times \mathrm{PR}$ of thofe on the oppofite fides A B, C D, weill be to the reitanjle $\mathrm{PS} \times \mathrm{P} T$ of thofe on the other treo oppofite fides A C, B D, in a given ratio.

Casei. Let us fuppofe firft that the lines drawn to one pair of oppofite fides are parallel to cither of the other fides; as $P Q$ and $P R$ (PLL8. Fig.4) to the fide $A C$, and $P S$ and $P T$ to the fide $A B$. And farther, that one pair of the oppofite fides, as $A C$ and $B D$, are parallel betwixt themelelves; then the

Sect. V. of Natural Philofopby. 105 the right line which bifeets thofe parallel fides will be one of the diameters of the conic feetion, and will likewile bifect $R Q$. Let O be the point in which $R Q$ is bifected, and $P O$ will be an ordinate to that diameter. Produce $P O$ to K, fo that $O K$ may be equal to $P O$, and $O K$ will be an ordinate on the other fide of that diameter. Since therefore the points A, B, P, and K are placed in the conic fection, and $P K$ cuts $A B$ in a given angle, the rectangle $P O K$ (by prop. 17. 19. 21. \& 23. book 3 . of Apollonius's conics) will be to the rectangle $A Q B$ in a given ratio. But $Q K$ and $P R$ are equal, as being the differences of the equal lines $O K, O P$, and $O Q, O R$; whence the rectangles $P Q K$ and $P Q \times P R$ are equal ; and therefore the retangle $P Q \times P R$ is to the reftangle $A Q B$, that is, to the rettangle $P S \times P T$ in a given ratio. Q. E. D.

C ASE 2. Let us next fuppofe that the oppofite fides $A C$ and $B D$ (Pl. 8. Fig. 5.) of the trapezium, are not parallel. Draw $B d$ parallel to $A C$ and meeting as well the right line $S T$ in t, as the conic feetion in d. Join $C d$ cutting $P Q$ in r, and draw $D M$ parallel to $P Q$, cutting $C d$ in M and $A B$ in N. Then (becaufe of the fimilar triangles $B T t, D B N$,) $B t$ or $P Q$ is to $T t$ as $D N$ to $N B$. And fo $R r$ is to $A \cup$ or $P S$ as $D M$ to $A N$. Wherefore, by multiplying the antecedents by the antecedents and the confequents by the confequents, as the refangle $P Q \times R r$ is to the rectangle $P S \times T t$, fo will the rettangle $N D M$ be to the rectangle $A N B$, and (by cafe I .) (o is the retangle $P Q \times P r$ to the retangle $P S \times P t$, and by divifion, fo is the rectangle $P Q \times P R$ to the retangle $P S \times I T$. Q.E.D.

CASE 3. Let us fuppofe laftly the four lines $P Q, P R, P S, P T$ (Pl. 8. Fig. 6.) not to be paral-

106 Mathematical Principles Book I. tel to the fides $A C, A B$, but any way inclined to them. In their place draw $P q, P r$ parallel to $A C$; and $P s, P t$ paralle to $A B$; and becaufe the angles of the triaggles $P Q q, P R r, P S s, P T_{t}$ are given, the ratio's of $P Q$ to $P q, P R$ to $P r, P S$ to $P s, P T$ to P t will be alfo given; and therefore the compounded ratio's $P Q \times P R$ to $P q \times P r$, and $P S \times P T$ to $P_{s} \times P_{t}$ are given. But from what we have demonftrated before, the ratio of $P q \times P r$ to $P s \times$ $P t$ is given; and therefore alfo the ratio of $P Q \times$ $P R$ to $P S \times P T$. Q.E.D.

Lemma XVIII.

The fame things futposed, if the rectangle $\mathrm{PQ} \times \mathrm{PR}$ of the lines drawn to the two oppofite fides of the traperium is to the rectangle PS \times PT of thofe drazen to the other tweo fides, in a given ratio; the point P , from rebence thofe lines are drawn, will be flaced in a conic fection defcribed about the trapezium. (PI. 8. Fig. 7.)
Conceive a conic fection to be defrribed paffing through the points A, B, C, D, and any one of the infinite number of points P, as for example p; I fay the point P will be always placed in this fection. If you deny the thing, join $A P$ cutting this conic fection fomewhere elfe if poffible than in P, as in b. Therefore if froma thofe points p and b, in the given angles to the fides of the trapezium, we draw the right ines $p q, p r, p s, p t$, and $b k, b n, b f, b d$, we hall have

Sect. V. of Natural Pbilofophy. 107
as $b b \times b n$ to $b f \times b d$, fo (by Lem. 17.) pg $\times p r$ to $P s \times P^{t}$; and fo (by fuppofition) $P C \times 1 R$ to $P S \times$ P T. And becaufe of the fimilar trapezia $b k A f$, $P Q A S$, as $b k$ to $b f$, fo $P Q$ to $P S$. Wherefore by dividing the terms of the preceding proportion by the correfpondent terms of this, we fhall have $b n$ to $b d$ as $P R$ to $P T$. And therefore the equiangular trapezia Dn $6 d, D R P T$ are fimilar, and confequently their diagonals $D 6, D P$ do coincide. Wherefore 6 falls in the interfection of the right lines $A P, D P$, and confequently coincides with the point P. And therefore the point P where-ever it is taken, falls to be in the afGigned conic fection. Q.E.D.

Cor. Hence if three right lines $P Q, P R, P S$, are drawn from a common point I to as many other right lines given in pofition $A B, C D, A C$, each to each, in as many angles refpectively given, and the rectangle $P Q \times P R$ under any two of the lines drawn be to the fquare $P S^{2}$ of the third in a given ratio: The point P, from which the right lines are drawn, will be placed in a conic fegion that touches the lines $A B$, $C D$ in A and C; and the contrary. For the pofition of the three right lines $A B, C D, A C$ remaining the fame, let the line $B D$ approach to and coincide with the line $A C$; then let the line $p T$ come likewife to coincide with the line $P S$; and the rectangle $P S \times$ $P T$ will become $P S^{2}$, and the right lines $A B, C D$, which before didcut the curve in the points A and B, C, and D, can no longer cut, but only touch, the furve in thofe co-inciding points.

In this lemma, the name of conic fection is to be underftood in a large fenfe, comprehending as well the rectilinear fection thro' the vertex of the cone, as the circular one parallel to the bafe. For if the point p happens to be in a right line, by which the poins A and D or C and B are joined, the conic fection will be changed into two right lines, one of which is that right line upon which the point p falls, and the other is a right line that joins other two of the four points. If the two oppofite angles of the trapezium taken together are equal to two right angles, and if the four lines $P Q, P R, P S, P T$ are drawn to the fides thereof at right angles, or any other equal angles, and the rectangle $P Q \times P R$ under two of the lines drawn $P Q$ and $P R$, is equal to the rectangle $P S \times P T$ under the other two $P S$ and $P T$, the conic fetion will become a circle. And the fame thing will happen, if the four lines are drawn in any angles, and the reetangle $P Q \times P R$ under one pair of the lines drawn, is to the retangle $P S \times P T$ under the other pair, as the rectangle under the fines of the angles S, T, in which the two laft lines $P S, P T$ are drawn, to the reCtangle under the fines of the angles Q, R, in which the two firft $P Q, P R$ are drawn. In all other cafes the locus of the point P will be one of the three figures, which pafs commonly by the name of the conic fections. But in room of the trapezium $A B C D$, we may fublitute a quadrilateral figure whofe two oppofite fides crofs one another like diagonals. And one or two of the four points A, B, C, D may be fuppofed to be removed

Sect. V. of Natural Pbilofopby. 109
to an infinite diftance, by which means the fides of the figure which converge to thofe points, will become parallel : And in this cafe the conic fetion will pars through the other points, and will go the fame way as the parallels in infinitum.

Lemma XIX.

To find a point P (PI. 8. Fig. 8.) fionz zebich if four right lines $\mathrm{PQ}, \mathrm{PR}, \mathrm{PS}, \mathrm{P}$ T are drawn to as many other right lines A B, CD, AC, BD given by pofition, each to each, at given angles, the rectangle $\mathrm{PQ} \times \mathrm{PR}$, under any tzeo of the lines drazen, fall be to the rectangle PS $\times \mathrm{PT}$, under the other two, in a given ratio.

Suppofe the lines $A B, C D$, to which the two right lines $P Q, P R$, containing one of the rectangles, are drawn to meet two other lines, given by pofition, in the points A, B, C, D. From one of thofe as A, draw any right line $A H$, in which you would find the point P. Let this cut the oppofite lines $B D, C D$, in H, and I; and, becaufe all the angles of the figure are given, the ratio of $P Q$ to $P A$, and $P A$ to $P S$, and therefore of $P Q$ to $P S$ will be alio given. Subdutaing this ratio from the given ratio of $P Q \times P R$ to $P S \times P T$, the ratio of $P R$ to $P T$ will be given; and adding the given ratio's of $P I$ to $P R$, and $P T$ to $P H$, the ratio of $P I$ to $P H$, and therefore the point P will be given. Q.E.I.

Cor. I. Hence alfo a tangent may be drawn to any point D of the locus of all the points P. For the

110 Mathematical Principles Book I. the chord $P D$, where the points P and D meet, that is, where $A H$ is drawn thro' the point D, becomes a tangent. In which cafe the ultimate ratio of the evanefcent lines $I P$ and $P H$ will be found as above. Therefore draw $C F$ parallel to $A D$, meeting $B D$ in F, and cut it in E in the fame ultimate ratio, then $D E$ will be the tangent; becaufe $C F$, and the evanefcent $I H$ are parallel, and fimilarly cut in E and P.

Cor. 2. Hence alfo the locus of all the points P may be determined. Through any of the points A, B, C, D, as A (IL. 9. Fig. 1.) draw $A E$ touching the locus, and through any other point B parallel to the tangent, draw $B F$ meeting the locus in F : And find the point F by this lemma. Bifect $B F$ in G, and drawing the indefinite line $A G$, this will be the pofition of the diameter to which $B G$, and $F G$ are ordinates. Let this $A G$ meet the locus in H, and $A H$ will be its diameter or latus tranfverfum, to which the latus reCtum will be as $B G^{2}$ to $A G \times G H$. If $A G$ no where meers the locus, the line $A H$ being infinite the locus will be a parabola; and its latus reetum correfponding to the diameter $A G$ will be $\frac{B G^{2}}{A G}$. But if it does meet it any where, the locus will be an hyperbola, when the points A and H are placed on the fame fide the point G; and an ellipfis, if the point G falls between the points A and H; unlefs perhaps the angie $A G B$ is a right angle, and at the fame time $B G^{2}$ equal to the rettangle $A G H$, in which cafe the locus will be a circle.

And fo we have given in this corollary a folution of that famous problem of the ancients concerning four lines, begun by Euclid, and carried on by Apollonixs; and this not an analytical calculus, but a geometrical compofition, fuch as the ancients required.

Lemma

Plate VIII. I il. I.P.no.

Sect. V. of Natural Pbilofophy.
III

Lemma XX.

If the two oppofite angular points A and P (Pl.9. Fig. 2.) of any parallelogram ASPQ touch any conic fecition in the points A and \mathbf{P}; and the fides A Q, AS of one of thofe angles, indefinitely produced, meet the fame conic fection in B and C ; and from the points of concourfe B and C to any fifth point D of the conic fection, tzeo right lines B D, C D are drazen meeting the two other fides PS, PQ of the parallelogram, indefinitely produced, in T and R ; the parts PR and P T, cut of from the fides, will always be one to the other in agiven ratio. And vice verfa, if thofe parts cut off are one to the other in a given ratio, the locus of the point D reill be a conic Section, paling through the four points A, B, C, P.

Case 1. Join BP,CP, and from the point D draw the two right lines $D G, D E$, of which the firft $D G$ hall be parallel to $A B$, and meet $P B, P Q$, $C A$ in H, I, G; and the other $D E$ fhall be parallel to $A C$, and meet $P C, P S, A B$, in F, K, E; and (by Lem. 17.) the retangle $D E \times D F$ will be to the rectangle $D G \times D H$, in a given ratio. But $P Q$ is to $D E$ (or $I Q$) as $P B$ to $H B$, and confequently as $P T$ to $D H ;$ and by permutation, $P \underset{\text { is }}{Q}$

112 Mathematical Principles Book I.
is to $P T$, as $D E$ to $D H$. Likewife $P R$ is to $D F$ as $R C$ to $D C$, and therefore as ($I G$ or) $I S$ to $D G$; and, by permutation, $P R$ is to $P S$ as $D F$ to $D G$; and, by compounding thofe ratio's, the reCtangle $P Q_{x}$ $P R$ will be to the rectangle $P S \times P T$ as the $r \in a n-$ gle $D E \times D F$ is to the reqangle $D G \times D H$, and confequently in a given ratio. But $P Q$ and $P S$ are given, and therefore the ratio of $P R$ to $P T$ is given. O.E.D.

CASE2. But if $P R$ and $P T$ are fuppofed to be in a given ratio one to the orher, then by going back again by a like reafoning, it will follow that the rectangle $D E \times D F$ is to the rectangle $D G \times D H$ in a given ratio ; and fo the point D (by lem. 18.) will lie in a conic fection pafling thro' the points A, B, C, P, as its locus. Q.E.D.

Cor. r. Hence if we draw $B C$ cutting $P Q$ in r, and in $P T$ take $P t$ to $P r$ in the fame ratio which $P T$ has to $P R$: Then $B t$ will touch the conic fection in the point B. For fuppofe the point D to coalefee with the point B, fo that the chord $B D$ vanifhing, $B T$.hall become a tangent, and $C D$ and $B T$ will coincide with $C B$ and $B t$.

Cor. 2. And vice verfa, if $B t$ is a tangent, and the lines $B D, C D$ meet in any point D of a conic fection; $P R$ will be to $P T$ as $P r$ to $P r$. And on the contrary, if $P R$ is to $P T$ as $P r$ to F t, then $B D$, and $C D$ will meet in fome point D of a conic fection.

Cor. 3. One conic fettion cannot cut another conic fection in r ore than four points. For, if it is poffible, let two conic fections pars thro' the five points A, B, C, P, O and let the right line $B D$ cut them in the points D, d, and the right line $C d$ cut the right line $P Q$ in q. Therefore $P R$ is to $P T$ as $P q$ to $P T$:

Whence

Sect. V. of Natural Pbilofophy. 113
Whence $P R$ and $p q$ are equal onc to the other, againft the fuppofition.

Lemma XXI.

If treo moveable and indefinite right lines
B M, C M draien through given foints B, \mathbf{C}, as poles, do by their point of concourle M defcribe a third right line $\mathbf{M N}$ given by pofition; and other two indefinite right lines B D, CD are drazen, making with the former two at thole given points B, C, given angles, MBD, MCD: I fay that thofe two right lines BD, CD rill by their foint of corcourse D defcribe a conic fection pall n through the points B, C. And vice verfa, if the right lines BD, CD do ly their point of concourfe D defcrile a canic fection fafling through the given foints B, C, A, and the angle DBM is always equal to the given angle ABC, as well as the angle DCM alwerys equal to the given angle ACB : the point M zeill lie in a right line given ly fogition, as its locus. PI. 9. Fig. 3.

For in the right line $M N$ let a point N be given, and when the moveable point M falls on the immoveable point N, let the moveable point D fall on an immoveable point P. Join $C N, B N, C P$,
$B P$, and from the point P draw the right lines $P T, P R$ meeting $B D, C D$ in T and R, and making the angle $B P T$ equal to the given angle $B N M$, and the angle $C P R$ equal to the given angle $C N M$. Wherefore fince (by fuppofition) the angles $M B D$, $N B P$ are equal, as alfo the angles $M C D, N C P$; take away the angles $N B D$ and $N C D$ that are common, and there will remain the angles NBM and $P E T, N C M$ and $P C R$ equal; and therefore the triangles $N B M, P B T$ are fimilar, as alfo the triangles $N C M, P C R$. Wherefore $P T$ is to $N M$, as $P B$ to $N B$; and $P R$ to $N M$, as $P C$ to $N C$. But the points B, C, N, P are immoveable: Wherefore $P T$ and $P R$ have a given ratio to $N M$, and confequently a given ratio between themfelves; and therefore, (by km .20 .) the point D wherein the moveable right lines $B T$ and $C R$ perpetually concur, will be placed in a conic fection palling through the points B, C, P. Q.E. Γ.

And vice verfa, if the moveable point D(PL. 9. Fig. 4.) lies in a conic fection paffing through the given points B, C, A; and the angle $D B M$ is al ways equil to the given angle $A B C$, and the angle $D C M$ always equal to the given angle $A C B$, and when the point D falls fucceffively on any two immoveable poins p, P, of the conic fection, the moveable point M falls fucceffively on two immoveable points n, N : through thefe points n, N, draw the right line $n N$, this line $n N$ will be the perpetual locus of that moveable point M. For if poffible, let the point M be placed in any curve line. Therefore the point D will be placed in a conic feetion pating through the five points B, C, A, p, P, when the point M is perpetually placed in a curve line. But from what was demonftrated before, the point D will

Sect. V. of Natural Pkilofophy. 115 will be alfo placed in a conic fection, paffing through the fame five points B, C, A, p, P, when the point M is perpetually placed in a right line. Wherefore the two conic feetions will both pals through the fame five points, againft corol. $3 . \mathrm{lem}$. 20. It is therefore abfurd to fuppofe that the point M is placed in a curve line. Q. E. D.

Proposition XXII. Problem XIV.

To defcribe a trajectiory that flall pafs through five given points. Pl. 9 Fig. $5 \cdot$

Let the five given points be A, B, C, P, D. From any one of them as A, to any orher two as B, C, which may be called the poles, draw the right lines $A B, A C$, and parallel to thofe the lines TPS, $P R Q$ through the fourth point P. Then from the two poles B, C, draw through the fifth point D two indefinite lines $B D T, C R D$, meeting with the laft drawn lines TPS, PRQ (the former with the former, and the later with the later) in T and R. Then drawing the right line $t r$ pacallel to $T R$, cutting off from the right lines $P T_{2} P R$, any fogments $P t, F r$, proportional to $P T, P R$; and if through their extremities t, r, and the poles B, C, the right lines $B t, C r$ are drawn, meeting in d, that point d will be placed in the trajeftory required. For (by len. 20.) that point d is placed in a conic fection paffing through the four points A, B, C, P; and the lines R_{r}, \mathcal{T}_{t} vanihhing, the point d comes to coincide with the point D. Wherefore the conic fection paffes

116 Mathematical Principles Book I.

The fame otherweife. Pl. 9. Fig. 6.
Of the given points jois any three as A, B, C; and about two of them B, C, as poles, making the angles $A B C, A C B$ of a given magnitude to revolve, apply the legs $B A, C A$, firft to the point D, then to the point P, and mark the points M, N, in which the other legs $B L, C L$ interfect each the other in both cafes. Draw the indefinite right line $M N$, and let thore moveable angles revolve about their poles B, C, in fuch manner that the interfection, which is now fuppofed to be m, of the legs $B L, C L$, or $B M, C M$, may always fall in that indefinite right line $M N$; and the interfection which is now fuppofed to be d, of the legs $B A, C A$, or $B D, C D$, will defribe the trajectory required PAD d b. For, (by lem. 21.) the point d will be placed in a conic fection pafling through the points B, C; and when the point m comes to coincide with the points L, M, N, the point d will (by conftruction) come to coincide with the points A, D, P. Wherefore a conic fettion will be defcribed that flall pafs through the five points A, B, C, P, D. Q. E. F.
Cor. I. Hence a right line may be readily drawn which fhall be a tangent to the trajefory in any given point β. Let the poine d come to coincide with the point B, and the right line $B d$ will become the rangent required.
Cor. 2. Hence alfo may be found the centres, diameters, and latera reta of the trajettories, as in cor. 2. lem. 19.

Scholivm.

The former of thefe conftructions (Tig. 5.) will become fomething more fimple by joining $B P$, and in that line, produced if need be, taking $B P$ to $B P$ as $P R$ is to $P T$; and through p drawing the indefinite right line pe parallel to $S P T$; and in that line $p e$ taking always $p e$ equal to $P r$; and drawing the right lines $B e, C r$ to meet in d. For fince $P r$ to $P t, P R$ to $P T, p B$ to $P B, p e$ to $P t$, are all in the fame ratio, $p e$ and Pr will be always equal. After this manner the points of the trajectory are moft readily found, unlefs you would rather deferibe the curve mechanically as in the fecond conftruction.

Proposition XXIII. Problem XV.

To dofcribe a trajeglory that Jball pafs through four given points, and touch a right inne given by pofition. Pl. ro. Fig. 1 .

Case 1. Suppofe that $H B$ is the given tangent, B the point of contact, and C, D, P, the three other given points. Join $B C$, and drawing $P S$ parallel to $B H$, and $P Q$ parallel to $B C$; compleat the parallelogram $B S P Q$. Draw $B D$ cutting $S P$ in T, and $C D$ cutting $P Q$ in R. Laftly, drawing any line $t r$ parallel to $T R$, cuting off from $P Q, P S$, the fegments Pr, Pt proportional to $P R, P T$ refpectively; and drawing $\mathrm{Cr}, E t$, their point of concourfe d will (by lem. 20.) always fall on the trajectory to be defribed.

The fame otberwife. Pl. 1o. Fig. 2.
Let the angle $C B H$ of a given magnitude revolve about the pole B, as alfo the reCtilinear radius $D C$ both ways produced, about the pole C. Mark the points M, N, on which the leg $B C$ of the angle cuts that radius when $B H$ the other leg thereof meets the fame radius in the points P and D. Then drawing the indefinite line $M N$, let that radius $C P$ or $C D$ and the leg $B C$ of the angle perpetually meet in this line; and the point of concourfe of the other leg $B H$ with the radius will delineate the trajectory required.

For if in the conftructions of the preceding problem the point A comes to a coincidence with the point B the lines $C A$ and $C B$ will coincide, and the line $A B$, in its laft fituation, will become the tangent $B H$; and therefore the conftructions there fet down will become the fame with the conftructions here defcribed. Wherefore the concourfe of the leg BH with the radius will defribe a conic fection paffing through the points C, D, P, and touching the line $B H$ in the point B. Q.E.F.

CASE 2. Suppole the four points R, C, D, P, (PI. io Fg. 3.) given, being firuated without the tangent $H F$. Join each two by the lines $B D, C P$, meeting in G, and cutting the tangent in H and I. Cut the angent in A in fuch manner that $H A$ may be to $I A$, as the rectangle under a mean proportional between $C G$ and $G P$, and a mean proportional berween $E H$ and $H D$, is to a rectangle under a mean proportional berween $G D$ and $G B$, and a mean proportional between $P I$ and $I C$; and A will be the point of contact. For if $H X$, a parallel to the right line

Plate V.Y íl.I. Pıs.

-

ingriod or Google

Sect. V. of Natural Philofophy. 119
line $P I$, cuts the trajeCtory in any points X and r, the point A (by the properties of the conic fections) will come to be fo placed, that $H A^{2}$ will become to $A I^{2}$ in a ratio that is compounded out of the ratio of the rettangle $X H Y$ to the rectangle $B H D$, or of the reftangle $C G P$ to the rettangle $D G B$; and the ratio of the reCtangle $B H D$ to the retangle PIC. But after the point of contact A is found, the trajectory will be defrribed as in the firft cafe. Q. E. F. But the point A may be taken either between or without the points H and I; upon which account 2 twofold trajectory may be defribed.

Proposition XXIV. Problem XVI.

To defcribe a trajectory that foall pafs through three given points, and touch two right lines given by paition. Pl. 10. Fig. 4.

Suppofe $H I, K L$ to be the given tangents, and B, C, D, the given points, Through any two of thofe points as B, D, draw the indefinite right line $B D$ meeting the tangents in the points H, K. Then likewife through any other two of thefe points as C, D, draw the indefinite right line $C D$, meeting the tangents in the points I, L. Cut the lines drawn in R and S, fo that $H R$ may be to $K R$, as the mean proportional between $B H$ and $H D$ is to the mean proportional between $B K$ and $K D$; and $I S$ to $L S$, as the mean proportional between $C I$ and $I D$ is to the mean proportional between $C L$ and 4. D : But you may cut, at pleafure, either within

$$
14
$$

0

120 Mathenatical Principles Book I.

or between the points K and H, I and L, or without them; then draw $R S$ cutting the tangents in A and P, and A and P will be the points of contact. For if A and P are fuppofed to be the points of conteat, fituated any where elfe in the tangents, and through any of the points $H i, I, K, L$, as I, fituated in either tangent $H I$, a right line $I T$ is drawn, parallel to the other tangent $K L$, and meeting the curve in X and r, and in that right line there be taken $I Z$ e. qual to a mean proportional between $I X$ and $I r$; the rectangle $X I T$ or $I Z^{2}$, will (by the properties of the conic fections) be to $L P^{2}$, as the retangle $C I D$) is to the reetangle $C L D$, that is (by the conftruction) as $S I^{2}$ is to $S L^{2}$, and therefore $I Z$ is to $L P$, as $S I$ to $S L$. Wherefore the points \mathcal{S}, P, Z, are in one right line. Moreover, fince the tangents meet in G, the rectangle $X I T$ or $I Z^{2}$ with (by the propertics of the conic fections) be to $I A^{2}$ as $G I^{2}$ is to $G A^{2}$, and confequently $I Z$ will be to $I A$, as $G P$ to $G A$. Wherefore the points P, Z, A, lie in one right line, and therfore the points S, P, and A are in one right line. And the fame argument will prove that the points R, P, and A are in one right linc. Wherefore the points of contact A and P lie in the right line $R S$. But aftes thefe points are found the trajectory may be deferibed as in the firlt cafe of the preceding problem. C. E. F.

In this propofition, and cafe 2 . of the foregoing, the conftructions are the fame, whether the right line $X Y$ cut the trajeEtory in X and Y, or not; neither do they depend upon that fection. But the confructions being demonftrated where that right line does cut the trajectory, the confructions, where it does not,

Sect. V. of Natural Pbilofophy.

are alfo known; and therefore, for brevity's fake, I omit any farther demonflration of them.

$$
\mathrm{Lemma}_{\mathrm{m}} \text { XXII. }
$$

To transform firures into other figures of the faine kind. Pl. Io. Fig. 5 .

Suppofe that any figure $H G I$ is to be transformed. Draw, at pleffure, two parallel lines $A O, B L$, cutting any third line $A B$ given by pofition, in A and B, and from any point G of the figure, draw out any right line $G D$, parallel to $O A$, till it meet the right line $A B$. Then from any given point O in the line $O A$, draw to the point D the right line $O D$, meeting $B L$ in d, and from the point of concourfe raife the right line $d g$ containing any given angle with the right line $B L$, and having fuch ratio to $O d$, as $D G$ has to $O D$; and g will be the point in the new figure hgi, correfponding to the point G. And in like manner the feveral points of the firft figure will give as many correfpondent points of the new figure. If we therefore conceive the point G to be carried along by a continual motion through all the points of the firft figure, the point g will be likewife carried along by a continual motion through all the points of the new figure, and defcribe the fame. For diftinction's fake, let us call $D G$ the firft ordinate, $d g$ the new ordinate, $A D$ the firft abcififa, ad the new abrciffa; O the pole, $O D$ the abfinding radius, $O A$ the firft ordinate radius, and O_{a} (by which the parallelogram radius.

I fay, then, that if the point G is placed in a righe line given by pofition, the point g will be alfo placed in a right line given by pofition. If the point G is placed in a conic fetion, the point g will be likewife placed in a conic fettion. And here I underftand the circle as one of the conic fections. But farther, if the point G is placed in a line of the third analytical order, the point g will alfo be placed in a line of the third order, and fo on in curve lines of higher orders. The two lines in which the points G, g, are placed, will be always of the fame analytical order. For as ad is to $O A$, fo are od to $O D, d g$ to $D G$, and $A B$ to $A D$; and therefore
 $\frac{O A \times d g}{a d}$. Now if the point G is placed in a right line, and therefore, in any equation by which the relation between the abrciffa $A D$ and the ordinate $D G$ is expreffed, thofe indetermined lines $A D$ and $D G$ rife no higher than to one dimenfion, by writing this equation $\frac{O A \times A B}{a d}$ in place of $A D$, and $\frac{O A \times d g}{a d}$ in place of $D G$, a new equation will be produced, in which the new abfciffa ad and new ordinate $d g$ rife only to one dimenfion; and which therefore mult denote a right line. But if $A D$ and $D G$ (or either of them) had rifen to two dimenfions in the firft equation, ad and $d g$ wouid likewife have rifen to two dimenfions in the fecond equation. And fo on in three or more dimenfions. The indetermined

Sect. V. of Natural Philofophy. 123 mined lines ad, $d g$ in the fecond equation, and $A D, D G$, in the firft will always rife to the fame number of dimenfions; and therefore the lines in which the points G, g, are placed are of the fame analytical order.
I fay farther, that if any right line touches the curve line in the firf figure, the fame right line transferred the fame way with the curve into the new figure, will touch that curve line in the new figure, and vice verfa. For if any two points of the curve in the firt figure are fuppofed to approach one the other till they come to coincide; the fame points transferred will approach one the other till they come to coincide in the new figure; and therefore the right lines with which thole points are joined will become together tangents of the curves in both figures, I might have given demonftrations of thefe affertions in a more geometrical form; but I fudy to be brief.
Wherefore if one rectilinear f:gure is to be transformed into another we need only transfer the interfettions of the right lines of which the firft figure confifts, and through the transferred interfections to draw right lines in the new figure, But if a curvilinear figure is to be transformed we muft transfer the points, the tangents, and other right lines, by means of which the curve line is defined. This lemma is of ure in the folution of the more difficult problems, For thereby we may transform the propofed figures if they are intricate into others that are more fimple, Thus any right lines converging to a point are transformed into parallels; by taking for the firft ordinate radius any right line that paffes through the point of concourfe of the converging lines, and that, becaufe their point of concourfe is by this means made

124 MatJematical Principles BookI.

to go off in infuitum, and parallel lines are fuch as rend to a point infinitely remote. And after the problem is folved in the new figure, if by the inverfe operations we transform the new into the firft figure, we thall have the folution required.

This lemma is alfo of ufe in the folution of folid problems. For as often as two conic fections occur by the interlection of which a problem may be folved; any one of them may be transformed if it is an hyperboia or a parabola, into an ellipfis, and then this ellipfis may be cafily changed into a circic. So alfio a right line and a conic fection in the conftruction of plane problems, may be transformed into a right line and a circle.

Prorosition XXV. Problem XVII.

To acfioble "t iatitituy that floall pafs throwa tero ciren points, and touch tbree rigbt lines gaven by tofition. Pl.10. Fig. 6.

Through the concourfe of any two of the tangents one with the other, and the concourfe of the third tangent with the right line which paffes through the two given points, draw an indefinite right line; and taking this line for the firft ordinate radius transform the figure by the preceding lemma into a new figure. In this figure thofe two tangents will become paralkel to each other, and the third tangent will be parallel to the right line that paffes through the two given points. Suppofe $b i, k l$ to be thofe two paraliel tangents, ik the third tangent, and bla right line parallel thercto, paffing through thofe points a, b, through

Sect. V. of Natural Philofopby. 125 through which the conic feetion ought to pars in this new figure; and compleating the parallelogram hikl, let the right lines $b i, i k, k l$ be fo cut in c, d, c, that $b c$ mav be to the fquare root of the rectangle $a b b$, ic to id, and ke to kd, as the fum of the right lincs $h i$ and $k l$ is to the fum of the three lines, the firft whereof is the right line $i k$, and the other two are the fquare roots of the reftangles $a b b$ and $a l b$; and c, d, c, will be the points of contact. For by the properties of the conic fections $b c^{2}$ to the rectangle $a b b$, and $i c^{2}$ to $i d^{2}$, and $k e^{2}$ to $k d^{2}$, and $c l^{2}$ to the reftangle $a l b$, are all in the fame ratio; and therefore bc to the fquare root of abb , ic to $i d$, ke to kd , and $e l$ to the fquare root of $a l b$, are in the fubduplicate of that ratio; and by compofition in the given ratio of the fum of all the antecedents $h_{i-1} \mathrm{kl}$, to the fum of all the confequents $\sqrt{ } a b b-1 \cdot i k+\sqrt{ }$ a $l b$. Wherefore from that given ratio we have the points of contact c, d, e, in the new figure. By the inverted operations of the laft lemma, let thofe points be transferred into the firft figure, and the trajeGory will be there defrribed by prob. 14. Q. E. F. But according as the points a, b, fall between the points b, l, or without them, the points c, d, c, muft be taken either between the points h, i, k, l, or without them. If one of the points a, b, falls between the points b, b, and the other without the points b, b, the problem is impoffible.

Proposition XXVI. Problem. XVIII.

To defcribe a trajectory that foall pafs through a given point, and touch four right lines given by pofition. Pl. 1 I. Fig. 1 .

From the common interfections of any two of the tangents to the common interfection of the other two draw an indefinite right line; and taking this line for the firft ordinate radius transform the figure (by lem. 22.) into a new figure, and the two pairs of tangents each of which before concurred in the firft ordinate radius will now become parallel. Let $h i$ and $k l$, ik and $h l$, be thofe pairs of parallels compleating the parallelogram bikl. And let p be the point in this new figure correfponding to the given point in the firft figure. Through \boldsymbol{O} the centre of the figure draw $p q$, and $O q$ being equal to $O p, q$ will be the other point, through which the conic fection mult pafs in this new figure. Let this point be transferred by the inverfe operation of lem. 22. into the firft figure, and there we thall have the two points, through which the trajectory is to be defcribed. But through thofe points that trajectory may be defcribed by prob. 17. Q.E.F.

Lem-

Prale X TOl.1. Peze.

SEcr. V. of Natural Pbilofophy.

Lemma XXIII.

If two right lines as AC, BD given by pofition, and terminating in given points A, B, are in a given ratio one to the other, and the right line CD , by which the indetermined foints C, D are joined, is cut in K in a given ratio; I fay that the point K zeill be placed in a right line given by toition. Pl. ir. Fig. 2.

For let the right lines $A C, B D$ meet in E, and in $B E$ take $B G$ to $A E$, as $B D$ is to $A C$, and let $F D$ be always equal to the given line $E G$; and by conftruction, $E C$ will be to $G D$, that is, to $E F$, as $A C$ to $B D$, and therefore in a given ratio; and therefore the triangle $E F C$ will be given in kind. Let $C F$ be cut in L fo as $C L$ mav be to $C F$ in the ratio of $C K$ to $C D$; and becaufe that is a given ratio, the triangle EFL will be given in kind, and therefore the point L will be placed in the right line $E L$ given by pofition. Join $L K$ and the triangles $C L K, C F D$ will be fimilar ; and becaufe $F D$ is a given line, and $L K$ is to $F D$ in a given ratio, $L K$ will be alfo given. To this let $E H$ be taken equal, and $E L K H$ will be always a parallelogram. And therefore the point K is always placed in the fide $H K$ (given by pofition) of that parallelogram. $Q . E . D$.

Cor.

128 Mathematical Principles Book I.
Cor. Becaufe the figure $E F L C$ is given in kind, the three right lines $E F, E L$ and $E C$, that is $G D$, $H K$ and $E C$ will have given ratio's to each other.

Lemma XXIV.

If three right lines, two whereof are parallel, and given by pofition, touch any conic Section; I fay, that the femidiameter of the Section which is parallel to thofe two is a mean proportional betzecen the fegments of thofe two, that are intercepted betreeen the points of contact and the third tangent. Pl. II. Fig. 3.

Let $A F, G B$ be the two parallels touching the conic fection $A D B$ in A and $B ; E F$ the third whit line touching the conic fection in I, and meeting the two former tangents in F and G, and let $C D$ be the femi-diameter of the figure parallel to thofe tangents; I fay, that $A F, C D, B G$ are continually proportional.

For if the conjugate diameters $A B, D M$ meet the tangent $F G$ in E and H, and cut one the other in C, and the parallelogram $I K C L$ be compleated; from the nature of the conic fections, $E C$ will be to $C A$ as $C A$ to $C L$, and fo by divifion, $E C-C A$ to $C A-C L$ or $E A$ to $A L$; and by compofition, $E A$ to $E A$ i $A L$ or $E L$, as $E C$ to $E C-1-C A$ or $E B$; and therefore (becaufe of the

Sect. V. of Natural Pbilofophy.
the fimilitude of the triangles $E A F, E L I, E C H$, $\boldsymbol{E} B G) A F$ is to $L I$ as $C H$ to $B G$. Likewife from the nature of the conic factions, $L I$ (or $C K$) is to $C D$ as $C D$ to $C H$; and therefore (ex aqua pertorbate) $A F$ is to $C D$, as $C D$ to $B G$. Q. E. D.

Cor. I. Hence if two tangents $F G, P Q$ meet two parallel tangents $A F, B G$ in F and G, P and Q, and cut one the other in O; $A F$ (ex aqua perturbate) will be to $B Q$, as $A P$ to $B G$, and by divifion, as $F P$ to $G Q$, and therefore as $F O$ to $O G$. Cor. 2. Whence alto the two right lines $P G$, $F Q$ drawn through the points P and G, F and Q will meet in the right line $A C B$. palling through the centre of the figure and the points of contact $A_{0} B$.

Lemma XXV.

If four fides of a parallelogram indefinitely proa'uced touch any conic rection, and are cut by a fifth, tangent; 1 fay, that taking tho fe segments of a ny two conterminous fides that terminate in opposite angles of the parallelogram, either fegment is to the file from which it is cut off, as that part of the other conterminous gide which is intercepted between the point of contact and the third file, is to the other segment. Pl. Ir. Fig. 4.
Let the four fides $M L, I K, K L, M I$ of the parallelogram MLIK touch the conic fection in K $A_{0} E_{0}$

130 Matbermatical Principles Book I: A, B, C, D; and let the fifth tangent $F Q$ cut thofe fides in F, Q, H and E, and taking the fegments $M E, K Q$ of the fides $M I, K I$; or the fegments $K H, M F$ of the fides $K L, M L$; I fay, that $M E$ is to $M I$ as $B K$ to $K Q$; and $K H$ to $K L$, as $A M$ to $M F$. For, by cor. 1. of the preceding lemma, $M E$ is to $E I$, as ($A M$ or) $B K$ to $B Q$; and, by compofition, $M E$ is to $M I$, as $B K$ to $K Q$. Q. E. D. Alfo $K H$ is to $H L$ as ($B K$ or) $A M$ to $A F$, and by divifion $K H$ to $K L$, as $A M$ to $M F$. Q. E: D.

Cor. 1. Hence if a parallelogram $I K L M$ defcribed about a given conic fection is given, the rectangle $K Q \times M E$, as alfo the reCtangle $K H \times M F$ equal thereto, will be given. For, by reaton of the fimilar triangles $K Q H, M F E$, thofe rectangles are equal.

Cor. 2. And if a fixth tangent eq is drawn meeting the tangents $K I, M I$ in q and c; the rectangle. $K Q \times M E$ will be equal to the rectangle $K q \times M e$, and $K Q$ will be to $M e$, as $K q$ to $M E$, and by divifion as $Q q$ to E c.

Cor. 3. Hence alfo if $E q, e Q$, are joined and bifected, and a right line is drawn through the points of bifection, this right line will pass through the centre of the conic fection. For fince $Q q$ is to E_{e}, as $K Q$ to Me ; the fame right line will pars through the middle of all the lines $E g, c Q, M K$ (by lem. 22.) and the middle point of the right line $M K$ is the centre of the fection.

Proposition XXVII. Problem XIX.
To defcribe a trajectory that may touch five right lines given by fortion. Pl. 11. Fig. 5 .

Suppofing $A B G, B C F, G C D, F D E, E A$ to be the tangents given by pofition. Bifeet in M and $N, A F, B E$ the diagonals of the quadrilateral figure $A B F E$ contained under any four of them; and (by cor. 3. lem. 25) the right line $M N$ drawn through the points of bifetion will pafs through the centre of the trajeftory. Again, biret in P and Q the diagonals (if I may fo call them) BD, GF of the quadriateral figure $B G D F$ contained under any orher four tangents, and the right line $P Q$ drawn through the points of bifeetion will pa/s through the centre of the trajeftory. And therefore the centre will be given in the concourfe of the bifeeting lines. Suppofe it to be O. Parallel to any tangent $B C$ draw $K L$, at fuch diftance that the centre O may be placed in the middle between the paralless; this $K L$ will touch the trajectory to be defcribed. Let this cut any other two tangents $G C D, F D E$, in L and K. Through the points C and K, F and L, where the tangents not parallel $C L, F K$ meet the parallel tangents $C F, K L$, draw $C K, F L$ meeting in R; and the right line $O R$ drawn and produced, will cut the parallel tangents $C F, K L$, in the points of contact. This appears from cor. 3. lem. 24. And by the fame method the other points of contals may be found, and then the trjeetory may be defcribed by prob. 14. Q. E. F.

Sсно-

11^{2}
 SCHOLIUM.

Under the preceding propofitions are comprehended thofe problems wherein either the centres or afymptotes of the trajectories are given. For when points and tangents and the centre are given, as many other points and as many other tangents are given at an equal diflance on the other fide of the centre. And an afymptote is to be confidered as a tangent, and its infinitely remore extremity (if we may fay fo) is a poine of contact. Conceive the point of contag of any tangent removed in infinizism, and the tangent will degenerate into an afymprote, and the confructions of the preceding problems will be changed into the conftrutions of thofe problems whercin the afymptote is given.

After the trjectory is defrctibed, we may find its axes and foci in this manner. In the conftruttion and figure of lem. $\mathbf{i 1 1 .}$ (Pl. 12. Fig. 1.) let thofe legs $B P, C P$, of the moveable angles $F B N, P C N$, by the concourfe of which the trjeetory was defribed, be made parallel one to the other; and retrining that pofition, let them revolve about their poles B, C, in that figure. In the mean while let the orher legs $C N, B N$, of thofe angles, by their concourfe K or k defrribe the circle $B K G C$. Let O be the centre of this circle; and from this centre upon the ruler $M N$, wherein thofe legs $C N, B N$ did concur while the trjeefory was deffribed, ke fall the perpendicular $O H$ meeting the circle in K and L. And when thofe other legs $C K, B K$ meet in the point K that is neareft to the ruler, the firft legs $C P, B P$ will be parallel to the greatra axis

Sect. V. of Natural Pbiloofophy,
and perpendicular on the leffer; and the contrary will happen if thofe legs meet in the remotelt point L. Whence if the centre of the trajectory is given, the axes will be given; and thofe being given, the foci will be readily found.

But the fquares of the axes are one to the other as $K \boldsymbol{H}$ to $L H$, and thence it is eafy to defcribe a trajectory given in kind through four given points. For if two of the given points are madc the poles C, B, the third will give the moveable angles $P C K$, PBK; but thofe being given, the circle BGKC may be defrribed. Then, becaufe the trajeCory is given in kind, the ratio of $O H$ to $O K$ and therefore $O H$ it felf, will be given. About the centre O , with the interval $O H$, defrribe another circle, and the right line that touches this circle and paffes through the concourfe of the legs $C K, B K$, when the firft legs $C P, B P$, meet in the fourth given point, will be the ruler $M N$, by means of which the trajetory may be defrribed. Whence allo on the other hand a trapezium given in kind (excepting a few cafes that are impofible) may be infcribed in a given conic fetion.

There are alfo other lemma's by the help of which trajetories given in kind may be defribed through given points, and touching given lines. Of fuch a fort is this, that if a right line is drawn through any point given by pofition, that may cut a given conic fection in two points, and the diftance of the interfetions is bifeted, the point of bifetion will touch another conic fection of the fame kind with the former, and having its axes parallel to the axes of the former. But I haften to things of greater ufe.

$$
\mathrm{K}_{3} \quad \text { LEM- }^{2}
$$

Iignemop Coogle

134 Mathematical Principles Book I.

Lemma XXVI.

To place the three angles of a triangle, given both in kind and magnitude, in respect of as many right lines given ty position, provided they are not all parallel among themselves, in fuck manner that the Several angles may touch the Several lines. Pl. 12. Fig. 2.

Three indefinite right lines $A B, A C, B C$, are given by portion, and it is required fo to place the triangle $D E F$ that its angle D may touch the line $A B$, its angle E the line $A C$, and its angle F the line $B C$. Upon $D E, D F$ and $E F$, deferibe three fegments of circles $D R E, D G F, E M F$, apable of angles equal to the angles $B A C, A B C$, $A C B$ reflectively. But thole fegments are to be defribed towards fuck fides of the lines $D E, D F$, $E F$, that the letters $D R E D$ may turn round about in the fame order with the letters $B A C B$; the letters $D G F D$ in the fame order with the lettets $A B C A$; and the letters $E M F E$ in the fame order with the letters $A C B A$; then compleating thole fegments into entire circles, let the two formet circles cut one the other in G, and fuppofe P and Q to be their centres. Then joining $G P$, $P Q$, take $G a$ to $A B$, as $G P$ is to $P Q$; and $2-$ bout the centre G, with the interval $G a$ defribe a circle that may cut the frt circle $D G E$ in a. Join $a D$ cutting the fecond circle $P F G$ in b, as

Sect. V. of Natural Pbilofophy. 135 well as a E cutting the third circle $E M F$ in c_{0} Compleat the figure $A B C d e f$ fimilar and equal to the figure $a b c D E F$. I fay the thing is done.

For drawing $F c$ meeting $a D$ in n, and joining $a G, b G, Q G, Q D, P D$; by conftruction the angle $E a D$ is equal to the angle $C A B$, and the ant gle acF equal to the angle $A C B$; and therefore the triangle anc equiangular to the triangle $A B C$. Wherefore the angle anc or $F n D$ is equal to the angle $A B C$, and confequently to the angle $F b D$; and therefore the point n falls on the point b. Moreover the angle $G P Q$ which is half the angle $G P D$ at the centre is equal to the angle $G a D$ at the circumference; and the angle $G Q P$, which is half the angle $G<D$ at the centre, is equal to the complement to two right angles of the angle $G b D$ at the circumference, and therefore cqual to the angle $G a b$. Upon which account the triangles $G P Q, G a b$, ace fimilar, and $G a$ is to $a b$, as $G P$ to $P Q$; that is (by confruction) as G a to $A B$. Wherefore $a b$ and $A B$ are equal; and confequently the triangles $a b c, A B C$, which we have now proved to be fimilar, are alfo equal. And therefore fince the angles D, E, F, of the triangle $D E F$ do refpetively touch the fides $a b$, $a c, b c$ of the triangle $a b c$, the figure $A B C d e f$ may be compleated fimilar and equal to the figure $a b c D E F$, and by compleating it the problem will be folved. Q. E. F.
Cor. Hence a right line may be drawn whofe parts given in length may be intercepted between three right lines given by pofition. Suppofe the triangle $D E F$, by the accefs of its point D to the lide $E F$, and by having the fides $D E, D F$ placed in direthum to be changed into a right line K 4 whofe
136. Mathematical Principles Book I. whofe given part $D E$ is to be interpofed between the right lines $A B, A C$ given by pofiticn ; and its given part $D F$ is to be interpofed between the right lines $A B, B C$, given by pofition; then by applying the preceding conftruction to this cafe the problem will be folved.

Proposition XXVIII. Problem XX.
To defcribe a trajeclory given both in kind and magnitude, given parts of zobich faall be interpofed between three right lines given by pofition. Pl: 12. Fig. 3.

Suppofe a trajeCtory is to be deferibed that may be fimilar and equal to the curve line $D E F$, and may be cut by three right lines $A B, A C, B C$ given by pofition, into parts $D E$ and $E F$, fimilar and equal to the given parts of this curve line.

Draw the right lines $D E, E F, D F$; and place the angles D, E, F, of this triangle $D E F$, fo as to touch thofe right lines given by pofition (by lem. 26.) Then about the triangle defcribe the trajectory, fimilar and equal to the curve $D E F$. R. E. F:

Plate NII.Tid.I. P.s?

Fig.2.p.134.

Sect. V. of Natural Philofophy.

Lemma XXVII.

To defrribe a trapeziuni given in kind, the angles whereof may be fo tlaced in refpect of four right lines given by foition, that are neither all parallel among themfelves nor converge to one common point, that the feveral ailgles may touch the feveral lines. Pl. 13. Fig. 1.

Let the four right lines $A B C, A D, B D, C E$, be given by pofition; the firft cutting the fecond in A, the third in B, and the fourth in C; and fuppofe a trapezium $f g h i$ is to be defcribed, that may be fimilar to the trapezium $F G H I$; and whofe angle f, equal to the given angle F, may touch the right line $A B C$; and the other angles \mathscr{S}, h, i, equal to the other given angles G, H, I, may rouch the other lines $A D, B D, C E$, refpectively. Join $F H$, and upon $F G, F H, F I$ defcribe as many fegments of circles FSG, FTH,FVI; the firtt of which $F S G$ may be capable of an angle equal to the angle $B A D$; the fecond $F T H$ capable of an angle equal to the angle $C B D$; and the third $F V I$ of an angle equal to the angle $A C E$. But the fegments are to be defcribed towards thofe fides of the lines $F G, F H, F I$, that the circular order of the letters FSGF, may be the fame as of the letters $B A D B$, and that the letters FTHF may turn about in the fame order as the letters $C B D C$, and the letters $F V I F$ in the fame or-

138. Matbematical Principles Book I.

 der as the letters $A C E A$. Compleat the fegments into entire circles, and let P be the centre of the firf circle FSG, Q the centre of the fecond FTH. Join and produce boch ways the line $P Q$, and in it take $Q R$ in the fame ratio to $P Q$, as $B C$ has to $A B$. But $Q R$ is to be taken towards that ficie of the point Q, that the order of the letters P, Q, R may be the fame, as of the letters A, B, C; and abous the centre R with the interval $R F$ defrribe a fourth circle $F N c$ cutting the third circle $F V I$ in c. Join $F c$ cutting the firft circle in a, and the fecond in b. Draw a $G, b H, c l$, and let the figure $A B C f g h i$ be made fimilar to the figure $a b c F G H I$; and the trapezium $f g h$ i will be that which was required to be defrribed.For let the two firft circles FSG, FTH cut one the other in $K_{;}$join $P K, Q K, R K, a K, b K$, $c K$, and produce ' QP to L. The angles $F a K$, $F b K, F c K$ at the circumferences are the halves of the angles $F P K, F Q K, F K K$, at the centres, and therefore equal to $L P K, L Q K, L R K$ the halves of thore angles. Wherefore the figure $P Q R K$ is equiangular and fimilar to the figure $a b c K$, and confequently $a b$ is to $b c$ as $P Q$ to $Q R$, that is as $A B$ to $B C$. But by confruation the angles $f A g, f B h, f C i$ are cqual to the angles $F a G, F b H$, Fc1. And therffore the figure $A B C f g b i$ may be compleated fimilar to the figure $a b c F G H I$. Which done a traptzium $f g b i$ will be conftruted fimilar to the trapczium $F G H I$, and which by is angles f, g, b, i will touch the right lines $A B C$, AD, BD, CE. O. E. F.
Cor. Hence a right line may be drawn whofe parts intercepted in a given order, between four right lines given by pofition, flall have a giveri pro-

Sect. V. of Natural Pbilofopby. 139. proportion among themfelves. Let the angles FGH,GHI, be fo far increafed that the right lines $F G, G H, H I$, may lie in directum, and by conftrueting the problem in this cafe, a right line $f g h i$ will be drawn, whofe parts $f g$, $g h, h i$, intercepted between the four right lines given by pofition, $A B$ and $A D, A D$ and $B D, B D$ and $C E$, will be one to another as the lines $F G, G H$, $H I$, and will obferve the fame order among themfelves. But the fame thing may be more readily done in this manner.

Produce $A B$ to K (Pl. 13. Fig. 2.) and $B \cdot D$ to L, fo as $B K$ may be to $A B$, as $H I$ to $G H$; and $D L$ to $B D$ as $G I$ to $F G$; and join $K L$ meeting the right line $C E$ in i. Produce $i L$ to M, fo as $L M$ may be to $i L$ as $G H$ to $H I$; then draw $M Q$ parallel to $L B$ and meeting the right line $A D$ in g, and join $g i$ cutting $A B, B D$ in f, b. I fay the thing is done.

For let $M g$ cut the right line $A B$ in Q, and $A D$ the right line $K L$ in \mathcal{S}, and draw $A P$ parallel to $B D$, and meeting $i L$ in P, and $g M$ to $L b$ (g g to hi, Mi to Li, GI to $H I, A K$ to $B K$) and $A P$ to $B L$ will be in the fame ratio. Cut $D L$ in R, fo as $D L$ to $R L$ may be in that fame ratio; and becaufe $g S$ to $g M, A S$ to $A P$, and $D S$ to $D L$ are proportional; therefore (ex agno) as $g S$ to $L h$, fo will $A S$ be to $B L$, and $D S$ to $R L$; and mixtly $B L-R L$ to $L h-B L$, as $A S-D S$ to $g S-A S$. That is, $B R$ is to $B h$, as $A D$ is to $A g$, and therefore as $B D$ to $\mathrm{g} Q$. And alternately $B R$ is to $B D$, as $B h$ to $g Q$, or as $f h$ to $f g$. But by conftruction the line $B L$ was cut in D and R, in the fame ratio as the line $F I$ in G and H; and therefore BR $B R$ is to $B D$ as $F H$ to $F G$. Wherefore $f b$ is to $f g$, as $F H$ to $F G$. Since therefore $g i$ to hi likewife is as $M i$ to L, that is, as $G I$ to $H I$, it is manifeft that the lines $F I$, f b are fimilarly cut in G and H, g and b. Q. E. F.
In the conftruation of this corollary, after the line $L K$ is drawn cutting $C E$ in i, we may proc duce $i E$ to V, fo as $E V$ may be to $E i$, as $F H$ to $H I$, and then draw $V f$ parallel to $B D$. It will come to the fame, if about the centre i, with an interval $I H$, we defribe a circle cutting $B D$ in X, and produce $i X$ to X, fo as i Y may be equal to $I F$, and then draw $Y f$ parallel to $B D$.
Sir Chriflopher Wren, and Dr. Wallis have long ago given other folutions of this problem.

Proposition XXIX. Problem XXI.

To defcrive a trajeclory given in kixd, that may be cut by four right lises given by pofition, into paits given in order, kind, and proportion.

Suppofe a trajetory is to be defrribed that may be fimilar to the curve line FGHI, (Pl. 13 . Fig. 3.) and whofe parts, fimilar and proportional to the parts $F G, G H, H I$ of the other, may be intercepted between the right lines $A B$ and $A D, A D$ and $B D, B D$ and C_{E} given by pofition, viz. the firft between the firft pair of thore lines, the fecond between the fecond, and the third between the third. Draw the right lines $F G, G H$, $H I, F I$; and (by lem! 27.) defrribe a trapezium

Sect. V. of Natzral Pbilofopby. $14 \mathbf{1}$ $f g$ hi that may be fimilar to the trapezium FGHI, and whofe angles f, g, h, i, may touch the right lines given by pofition, $A B, A D, B D, C E$, feverally according to their order. And then about this trapezium defcribe a trajetory, that trajectory will be fimilar to the curve line $F G H I$.

> Scholivm.

This problem may be likewife confructed in the following manner. Joining $F G, G H, H I, F I$, (Pl. 13. Fig. 4.), produce $G F$ to V, and join $F H, I G$, and make the angles $C A K, D A L$ equal to the angles $F G H, V F H$. Let $A K$, $A L$ meet the right line $B D$ in K and L, and thence draw $K M, L N$, of which let $K M$ make the angle $A K M$ equal to the angle $G H I$, and be it felf to $A K$, as $H I$ is to $G H$; and let $L N$ make the angle $A L N$ equal to the angle $F H I$, and be it felf to $A L$, as $H I$ to $F H$. But $A K, K M, A L$, $L N$ are to be drawn towards thofe fides of the lines $A D, A K, A L$, that the letters $C A K M C$, ALKA, DALND may be carried round in the fame order as the letters $F G H I F$; and draw $M N$ meeting the right line $C E$ in i. Make the angle $i E P$ equal to the angle $I G F$, and let $P E$ be to $E i$, as $F G$ to $G I ;$ and through P draw $P Q f$ that may with the right line $A D E$ contain an angle $P Q E$ equal to the angle $F I G$, and may meet the right line $A B$ in f, and join f i. But $P E$ and $P Q$ are to be drawn towards thofe fides of the lines $C E, P E$, that the circular order of the letters PEiP and PEQP may be the fame, as of the letters $F G H I F$, ard if upon the line f, in the

142 Mathematical Principles Book $\frac{1}{1}$. the fame order of letters, and fimilar to the trapezium $F G H I$, a trapezium $f g h i$ is conftucted, and a trjectory given in kind is circumfrribed about it, the problem will be folved.

So far concerning the finding of the orbiss. It remains that we determine the motions of bodis in the orbits fo found.

Sect:

Plate NIII.IM.I.P.1.t2.

-

Pis. 3.


```
ing tenoby Google
```

Sect. VI. of Natural PhiloSophy. 143

Section VI.

How the motions are to be found in given orbits.

Proposition XXX. Problem XXII.

To find at any aligned time the place of a body moving in a given paralotic trajectory.

Let S (Pl. 14. Fig. 1.) be the focus, and A the principal vertex of the parabola; and fuppofe $4 A S \times \mathrm{M}$ equal to the parabolic area to be cut off APS, which either was defrribed by the radius $S P_{3}$ fiance the bodies departure from the vertex, or is to be defribed thereby before its arrival there. Now the quantity of that area to be cut off is known from the time which is proportional to it. Bifect $A S$ in G, and erect the perpendicular $G H$ equal to ${ }_{3} \mathrm{M}$, and a circle defrribed about the centre H, with the interval $H S$, will cut the parabola in the place P required. For letting fall $P O$ perpen-

144 Mathematical Principles Book I. perpendicular on the axis, and drawing $P H$, there will be $A G^{2}-1-G H^{2}\left(=H P^{2}=A 0-A G\right)^{2}$ $\left.-|P \overline{O-G H}|^{2}\right)=A O^{2}-\mid P O^{2}-2 G A O-2 G H$ $-P O_{-1} A G^{2}-G H^{2}$. Whence $2 G H \times P O$ $\left(=A O^{2}-1 F O^{2}-2 G A O\right)=A O^{2}-1-\frac{1}{+} P O^{2}$. For $A O^{2}$ write $A O \times \frac{P O^{2}}{4 A S}$; then dividing all the terms by $3 P O$, and multiplying them by $2 A S$, we fhall have $\frac{4}{3} G H \times A S\left(=\frac{1}{6} A O \times P O-1-\frac{1}{2} A S \times P O=\right.$ $\frac{A O-13 A S}{6} \times P O=\frac{4 A O-3 S O}{6} \times P O=$ to
the area $\overline{A P O-S \overline{P O})}=$ to the area APS. But $G H$ was 3 M , and therefore $\frac{4}{\circ} G \times A S$ is $4 A S \times \mathrm{M}$. Wherefore the area cut off APS is equal to the area that was to be cut off $4 A S \times \mathrm{M}$. Q.E.D.

Cor. 1. Hence $G H$ is to $A S$, as the time in which the body defcribed the arc $A P$, to the time in which the body defcribed the are between the vertex A and the perpendicular erected from the focus S upon the axis.

Cor. 2. And fuppofing a circle $A S P$, perpetually to pafs through the moving body P, the velocity of the point H, is to the velocity which the body had in the vertex A_{1} as 3 to 8 ; and therefore in the fame ratio is the line $G H$ to the right line which the body, in the time of its moving from A to P, would defribe with that velocity which it had in the vertex A.

Cor. 3. Hence alfo on the other hand, the time may be found, in which the body has defribed any affigned arc $A P$. Join $A P$, and on ies middle point erect a perpendicular meeting the right line $G H$ in H.
LEm Ma XXl'li.

There is $n \mathrm{n}$ on 1 fisher an' ole amen, cut off by si at hates of plaikite wa te le zeniverfalh form! !mons if tomatoowns of any manley of pome tome ns ash dimenforis.

Suppose that within the oval any point is given, about which as a pole a right line is perpetually revolving, with an uniform motion, while in that right line a movable point prong out from the pole, moves always forward with a velocity propertonal to the fquare of that right line with nt the oval. By this motion that point will difertbe a Spiral with infinite circumgyration. Now if a portion of the area of the oval cut off by that right line could be found by a finite equation, the diffance of the point from the pule, which is proportional to this area, might be found by the fame equation, and therefore all the points of the fipiral might be found by a finite equation attu; and therefore the intersection of a right line given in pofition with the (viral might alien be found by a finite equation. But every right line infinitely produce cuts a (piral in an infinite number of points; and the equation by which any one interjection of two lines is found, at the fame time exhibits all their interfcetions by as many roots, and therefore fifes to as many dimentions as there are interfeetions. Because two circles mutually cut one

1+̣ Mathemstical Primeifles Book 1.
another in two points, one of thofe interfettions is not to be found but by an equation of two dimenfions, by which the other interfection may be alfo found. Becaule there may be four interictions of two conic fcttions, any one of them is not to be found univerfally but by an equation of four dimenfions, by which they may be all found together. For if thofe interfections are \int everally fought, becaufe the law and condition of all is the fame, the calculus will be the fame in every cale, and therffore the conclufion always the fame, which muft therefore comprehend all thofe interfections at once within it felf, and exhibit them all indifferently. Hence it is that the interfeations of the conic fections with the curves of the third order, becaufe they may amount to fix, come out together by equations of fix dimenfions; and the interfetions of two curves of the third order, becaufe they may amount to nine come out togecther by equations of nine dimenfions. If this did not neceflarily happen, we might reduce all Solid to plane problems, and thofe higher than folid to folid problems. But here I feak of curves irreducible in power. For if the equation by which the curve is defined may be reduced to 3 lower power, the curve will not be one fingle curve, but compofed of two or more; whofe interfeetions may be feverally found by different calculas's. After the fame manner the two imerfections of right lines with the conic fections, come out always by equations of two dimenfions; the three interfections of right lines with the irreducible curves of the third order by equations of three dimenfions; the four interfections of right lines with the irreducible curves of the fourth order,

Sect. VI. of Natural Philofopby. 147
by equations of four dimenfions, and fo on in infinitum. Wherefore the innumerable interfections of a right line with a fpiral, fince this is but one fimple curve, and not reducible to more curves, require equations infinite in number of dimenfions and roots, by which they may be all exhibited together. For the law and calculus of all is the frame. For if a perpendicular is let fall from the pole upon that interfecting right line, and that perpendicular together with the interfeeting line revolves about the pole, the interfections of the fpiral will mutually pafs the one into the other; and that which was firft or neareft, after one revolution, will be the fecond, after two, the third, and fo on; nor will the equation in the mean time be changed, but as the magnitudes of thofe quantities are changed, by which the pofition of the interfecting line is determined. Wherefore fince thofe quantities after every revolution return to their firft magnitudes, the equation will return to its firft form, and confequently one and the fame equation will exhibit all the interfections, and will therefore have an infinite number of roots, by which they may be all exhibited. And therefore the interfection of a right line wish a fpiral cannot be univerfally found by any finite equation; and of confequence there is no oval figure whofe area, cut off by right lines at pleafure, can be univerfally exhibited by any fuch equation.
By the fame argument, if the interval of the pole and point by which the fpiral is defrribed, is taken proportional to that part of the perimeter of the oval which is cut off; it may be proved that the length of the perimeter cannot be univerfally exhibited by any finite equation. But here I fpeak

L 2
of

148 Matbematial Princirles Book I. of ovals that are not touched by conjugate figures running out in infinitum.

Cor. Hence the area of an ellipfis, defcribed by a radius drawn from the focus to the moving body, is not to be found from the time given, by a finite equation; and therefore cannot be determined by the deficription of curves geometrically rational. Thofe curves I call geometrically rational, all the points whereof may be determined by lengths that are defineable by equations, that is, by the complicated ratio's of lengths. Other curves (fuch as fpirals, quadratrixes, and cycloids) I call geometrically irrational. For the lengths which are or are not as number to number (according to the tenth book of elements) are arithmetically rational or irrational. And therefore I cut off an area of an ellipfis proportional to the time in which it is defcribed by a curve geometrically irrational, in the following manner.

Proposition XXXI. Problem XXIII.

To find the flace of a body moving in a given elliptic trajeciory at any affigned time.

Suppore A (Pl. 14. Fig. 2.) to be the principal vertex, S the focus, and O the centre of the ellipfis $A P B$; and let P be the place of the body to be found. Produce $O A$ to G, fo as $O G$ may be to $O A$ as $O A$ to $O S$. Eregt the perpendicular $G H$; and about the centre O, with the interval $O G$, defcribe the circle $G E F$; and on the ruler $G H$,

Sect. V I. of Natural Philo opphy.
as a bafe, fuppofe the wheel $G E F$ to move forwards, revolving about irs axis, and in the mean time by its point A defrribing the cychid $A L I$. Which done, take $G K$ to the perimeter $G E F G$ of the wheel, in the ratio of the time in which the body, proceeding from A, deferibed the arc $A P$, to the time of a whole revolution in the elliplis. Ereet the perpendicular $K L$ meeting the cycloid in L, then $L P$ drawn parallel to $K G$ will meet the ellip fis in P the required place of the body.

For about the centre O with the interval $O A$ defrribe the femicircle $A Q B$, and let $L P$, produced if need be, meet the arc $A 2$ in Q, and join $S Q, O Q$. Let $O Q$ meet the arc $E F G$ in F, and upon $O Q$ let fall the perpendicular $S R$. The area $A P S$ is as the area $A \cup S$, that is, as the difference between the fector $O Q A$ and the triangle $O Q S$, or as the difference of the retangles $\frac{1}{2} O Q \times A Q$, and $\frac{1}{2} O Q \times S R$, that is, becaule $\frac{1}{2} O Q$ is given, as the difference between the are $A D$ and the right line $S R$; and therefore (becaure of the equality of the given ratio's $S R$ to the fine of the arc $A Q, O S$ to $O A, O A$ to $O G$, $A Q$ to $G F$, and by divifion, $A O-S R$ to $G F-$ fine of the arc $A Q$) as $G K$ the difference between the arc $G F$ and the fine of the arc $A Q$. Q. E. D.

Scholium.

But fince the defcription of this curve is difficult, afolution by approximation will be prif.rable. Firft then let there be found a certain ang'e B which may be to an angle of $57,2957^{8}$ de. reess, L 3

150 Mathematical Principles Book I. which an arc equal to the radius fubtends, as $S H$ (Pl. 14. Fig, 3.) the diftance of the foci, to $A B$ the diameter of the ellipfis. Secondly, a certain length L, which may be to the radius in the fame ratio inverfely. And thefe being found, the problem may be folved by the following analy fis. By any conftruction (or even by conjecture) fuppofe we know P the place of the body near its true place p. Then letting fall on the axis of the ellipfis the ordinate $P^{\prime} R$, from the proportion of the diameters of the ellipfis, the ordinate RQ of the circumfcribed circle $A Q B$ will be given; which ordinate is the fine of othe angle $A O Q$ fuppofing $A O$ to be the radius, and alfo cuts the ellipfis in P. It will be fufficient if that angle is found by a rude cakulus in numbers ncar the truth. Suppofe we alfo know the angle proportional to the time, that is, which is to four right angles, as the time in which the body defrribed the arc $A p$, to the time of one revolution in the ellipfis. Let this angle be N . Then take an angle $\cdot \mathrm{D}$, which may be to the angle B as the fine of the angle $A O Q$ to the radius; and an angle E which may be to the angle $\mathrm{N}-402 \div \mathrm{D}$, as the length L to the fame length L dimininhed by the co-fine of the angle $A O Q$, when that angle is lefs than a right angle, or increafed thereby when greater. In the next place take an angle F that may be to the angle B , as the fine of the angle $A O Q+\mathrm{E}$ to the radius, and an angle G, that may be to the angle $\mathrm{N}-A \mathrm{O}_{2}-\mathrm{E}-\mathrm{F}$, as the length L to the fame length L diminifitd by the co-fine of the ancle $A O Q-\mathrm{E}$, when that angle is lefs than a right angle, or increafed thereby when greater. For the third time take an angle H , that may be to the

Sect. VI. of Natural Philofophy. íst the angle B as the fine of the angle $A O Q-\mathbb{E}: \mathbf{G}$ to the radius; and an angle I to the angle $\mathrm{N}-\mathrm{AOO}-\mathrm{E}-\mathrm{G}-\mathrm{H}$, as the length L is to the fime length L diminifhed by the co-line of the angle $A O Q-\mathrm{E}+\mathrm{G}$ when that angle is lefs than a right angle, or increafed thereby when grater. And fo we may proceed in infinitum. Lafly, take the angle $A O q$ equal to the angle $A O Q-1$ E-1-G-1-1- efc. and from its co-fine Or and the ordinate $p r$, which is to its fine $q r$ as the leffer axis of the ellipfis to the greater, we hall have p the correct place of the body. When the angle $\mathrm{N}-A O Q_{-1} \mathrm{D}$ happens to be negative, the fign -1 of the angle E muft be every where changed into -, and the fign - into - 1. And the fame thing is to be underfood of the figns of the angles G and I , when the angles $\mathrm{N}-A O D-\mathbf{E}-\mathrm{F}$, and $\mathrm{N}-\mathrm{AOQ}-\mathrm{E}-\mathrm{G}-\mathrm{-}$ - come out negative: But the infinite feries $A O Q-1 \mathrm{E}-\mathrm{G}-1 \mathrm{I}-\mathrm{i}$ - 6 . converges fo very faft, that it will be farcely ever needful to proceed beyond the fecond term E. And the calculus is founded upon this theorem, that the area $A P S$ is as the difference between the arc $A Q$ and the right line let fall from the focus S perpendicularly upon the radius $0 Q$.

And by a calculus not unlike, the problem is folved in the hyperbola. Let irs centre be O, (FI. 14. Fig. 4.) its vertex A, its focus S, and afymptote $O K$. And fuppofe the quantity of the area to be cut off is known, as being proportional to the time. Let that be A, and by conjecture fuppofe we know the pofition of a right line $S P$, that cuts off an area $A P S$ near the truth. Join $O P$, and from A and P to the afymptote draw $A I, P K$ parallel to the orher afymptote:

$$
\mathrm{L}_{4} \quad \text { and }
$$

15^{2} Mathematical Principles Book I.

 and by the table of logarithms the area AIKP will be given, and equal thereto the ares OPA, which fubducted from the triangle OPS, will leave the area cut off $A P S$. And by applying $2 A P S-2 \mathrm{~A}$, or $2 \mathrm{~A}-2 A I S$, the double difference of the area A that was to be cut off, and the area $A l^{\prime} S$ that is cut off, to the line $S N$ that is let fall from the focus S, perpendicular upon the tangent $T T$, we thall have the length of the chord $P Q$. Which chord $P Q$ is to be infrribed berween A and P, if the arca $A P S$ that is cut off be greater than the area A that was to be cut off, but towards the contrary fide of the poirt P, if otherwife: and the point Q will be the place of the body more accuratelly. And by repeating the compuration the place may be found perpetually to greater and greater accuracy.And by fuch computations we have a gencal analytical refolution of the problem. But the particular calculus that follows, is better firted for aftronomical purpofes. Suppofing $A O, O B, O D$ (Pl. 14. Fig. 5.) to be the (cmi-axes of the ctlipfis, and L its latus refum, and D the difference betwixt the leffer fumi-axis $O D$, and $\frac{1}{2} \mathrm{~L}$ the half of the latus rectum: let an angle Y be found, whofe fine may be to the radius, as the retangle under that difference D and $A O-O D$ the half fum of the axes, to the fquare of the greater axis $A B$. Find alfo an angle Z whofe fine may be to the radius, as the double reftangle under the diffance of the foci $S H$ and that difference D , to triple the fquare of half the greater femi-axis $A O$. Thofe angles being once found, the place of the body may be thus determined. Take the angle 'T proportional to the time in which the arc $B P$

Sect. VI. of Natural Plilojophy. 153
was defcribed, or equal to what is called the mean motion; and an angle V , the firft equation of the mean motion to the angle Y , the greaceft firft cquation, as the fine of double the angle T is to the radius; and an angle X, the fecond equation, to the angie Z , the fecond greateft equation, as the cube of the fine of the angle T is to the cube of the radius. Then take the angle $B \boldsymbol{H} P$ the mean motion equated equal to $\mathrm{T}-|\mathrm{X}-|-\mathrm{V}$ the fum of the angles $\mathrm{T}, \mathrm{V}, \mathrm{X}$, if the angle T is lefs than a right angle; or equal to $\mathrm{T}+\hat{\mathrm{X}}-\mathrm{V}$ the difference of the fame, if that angle T is greater than one and lefs than two right angles; and if $H P$ meets the ellip fis in P, draw $S F$, and it will cut off the area $B S P$ nearly proportional to the time.
This practice feems to be expeditious enough, becaufe the angles V and X , taken in fecond minutes if you pleafe, being very fmall, it will be fufficient to find two or three of their firt figures. But it is likewife fufficiently accurate to anfwer to the theory of the planets motion: For even in the orbit of Mars, where the greateft equation of the centre amounts to ten degrees, the error will farcely exceed one fecond. But when the angle of the mean motion equated $B H P$ is found, the angle of the true motion $B S P$, and the diftance $S P$ are readily had by the known methods.
And fo far concerning the motion of bodies in curve lines. But it may alfo come to pafs that a moving body fhall afcend or defeend in a right line ; and I hall now go on to explain what belongs to fuch kind of motions.

154 Mathematical Principles Book I.

Section VII.

Concerning the rcitilinear ascent and defront of bodies.

Proposition XXXII. Problem XXIV.

Supposing that the centripetal force is reciprocally proportional to the Square of the diftance of the places from the centre; it is required to define the Spaces webich a body, falling direilly, defcribes in given times.

CASE i. If the body does not fall perpendicularly it will (by cor. 1. prop. 13.) defrribe Some conic fetation whore focus is placed in the centre of force. Suppose that conic faction to be ARFB (Pl. 15. Fig. 1.) and its focus S. And firft, if the figure be an ellipfis; upon the greater axe thereof $A B$ defribe the femi-circle $A D B$, and let the right line DPC pars through the falling body, making

Plate XIN . Iol.1.PSit.

$$
\text { Fig. } 3 \cdot p .150 .
$$

Sect. VII. of Natural Philofophy. 155 making right angles with the axis; and drawing $D S, P S$, the area $A S D$ will be propotional to the area $A S P$, and therefore alfo to the time. The axis $A B$ fill remaining the fame, let the breadth of the ellipfis be perpetually diminifited, and the area $A S D$ will always remain proportional to the time. Suppofe that breadth to be diminifhed in infinitum; and the obbit $A P B$ in that cafe coinciding with the axis $A B$, and the focus S with the extreme point of the axis B, the body will defcend in the right line $A C$, and the area $A B D$ will become proportional to the time. Wherefore the fpace $A C$ will be given which the body defrribes in a given time by its perpendicular fall from the place A, if the area $A B D$ is taken proportional to the time, and from the point D, the right line $D C$ is let fall perpendicularly on the right line AB. Q. E. I.

CASE 2. If the figure $K P B$ is an hyperbola, (Fig. 2.) on the fame principal diameter A^{B} defcribe the retangular hyperbola EED); and becaufe the arcas $C S P, C P f P, S P f B$, are feverilly to the feveral areas $C S D, C B E D, S D E B$ in the given ratio of the heights $C P, C D$; and the arca $S P f B$ is proportional to the time in which the body P will move through the arc PfB, the area $S D E B$ will be alfo proportional to that time. Let the latus retum of the hyperbola $R P B$ be diminifhed in infinitum, the latus tranfverfum remaining the fime; and the arc $P B$ will come to coincide with the right line $C B$, and the forus S with the vertex B, and the right line $S D$ with the right line $B D$. And therefore the area $B D E B$ will be proportional to the time in which the body C, by its perpen-

156 Mathematical Principles Book I. perpendicular defcent, defribes the line CB. Q. E. I.

CASE 3. And by the like argument if the figure $R P B$ is a parabola, (Fig. 3.) and to the fame principal vertex B another parabola $B E D$ is defcribed, that may always remain given while the former parbola in whole perimeter the body P moves, by having its latus rectum diminithed and reduced to nothing, comes to coincide with the line $C B$; the parabolic fegment $B D E B$ will be proportional to the time, in which that body P or C will defend to the centre S or $E . \quad$ L. E. I.

Proposition XXXIII. Theorem IX.

The things above found being supposed, I fay that the velocity of a falling body in any place C , is to the veld. city of a body, defcriling a circle alout the centre B at the difiance BC , in the fulduplicate ratio of AC, the difiance of the body from the remotes vertex A of the circle or relaygular hyperbola, to ${ }^{2}$ AB the principal femi-diameter of the figure. Pl. 15 .
Fig. i.

Let $A B$ the common diameter of both figures $R P B, D F R$ be bifected in O; and draw the right line $P T^{\text {t }}$ that may touch the figure $R P E$ in P, and likewife cut that common diameter $A B$ (produced if need be) in T; and let $S Y$ be perpendicular to this line, and $B Q$ to this diameter-

Sfect. ViII. of Natural Plilofofty. 157 and fuppofe the latus reetum of the figure RPB to be L. From cor. 9. prop. 16. it is manifeft that the velocity of a body, moving in the line R PB about the centre S, in any place P, is to the velocity of a body defribing a circle about the fame centre, at the diffance $S P$, in the fubduplicate ratio of the rectangle ; $L \times S P$ to $S Y^{2}$. For by the properties of the conic fections $A C B$ is to $C P^{2}$ as $2 A O$ to L , and therefore $\frac{2 C P^{2} \times A O}{A C B}$ is equal to L. Therefore thofe velocities are to each other in the fubduplicate ratio of $\frac{C P^{2} \times A}{A C B} \bar{B}$ to $S \gamma^{2}$. Moreover by the propertics of the conic fections, $C O$ is to $B O$ as $B O$ to $T O$, and (by compofition or divifion) as $C B$ to $B T$. Whence (by divifion or compofition) $B O$ - or -CO will be to $B O$, as $C T$ to $B T$, that is, $A C$ will be to $A O$ as $C P$ to $B O$; and thercfore $\frac{C F^{2} \times A O \times S P}{A C B}$ is equal to $\frac{B Q^{2} \times A C \times S P}{A O \times B C^{\prime}}$. Now fuppofe $C F$ the breadeh of the figure $R P B$ to be diminifhed in infinitum, fo as the point P may come to coincide with the point C, and the point S with the point B, and the line $S P$ with the line $B C$, and the line $S T$ with the line $B Q$; and the velocity of the body now defcending perpendicularly in the line $C B$ will be to the velocity of a body defribing a circle about the centre B at the diftance $B C$, in the fubduplicate ratio of $\frac{B Q^{2} \times A C \times S P}{A O \times B C}$ to $S r^{2}$, that is (neglecting the ratio's of equality of SP

158 Mathematical Principles Book 1. $S P$ to $B C$, and $B Q^{2}$ to $S Y^{2}$) in the fubduplicate ratio of $A C$ to $A O$ or $\frac{1}{2} A B$. Q. E. D.

Cor. i. When the points B and S come to coincide, $T C$ will become to $T S$, as $A C$ to AO.

Cor. 2. A body revolving in any circle at a given diftance from the centre, by irs motion converted upwards. will afcend to double its diftance from the centre.

Proposition XXXIV. Theorem X.
If the figure BED is a parabola, 1 fay that the velocity of a falling body in any place \mathbf{C} is equal to the velocity by wehich a body may uniformly defcribe a circle alout the centre B at balf the interval BC. Pl. 15 . Fig. 5 .

For (by cor. 7. prop. 16.) the velocity of a body defcribing a parabola $R P B$ about the centre S, in any place P, is equal to the velocity of a body uniformly defcribing a circle about the fame centre S at half the interval $S P$. Let the breadth $C P$ of the parabola be diminifhed in infinitum, fo as the parabolic arc $P f B$ may come to coincide with the right line $C B$, the centre S with the vertex B, and the interval $S P$ with the interval $B C$, and the propofition will be manifeft. Q.E.D.

$$
\underline{p}_{\mathrm{R}}
$$

Plate XV:/Wi.I.P. 15 s.

Sect. VII. of Natural Pbilofopby. 159

Proposition XXXV. Theorem XI.

The fame things fuppofed, I fay that the area of the figure DES, defcribed by the indefinite radius SD, is equal to the area which a body with a radius equal to balf the latus rectum of the figure DES, by uniformly revolving about the centre S, may defcribe in the fame time. Pl.16. Fig. 1.

For fuppofe a body C in the fimalleft moment of time defcribes in falling the infinitely little line C c, while another body K uniformly revolving about the centre S in the circle $O K k$, defcribes the are $K k$. Erect the perpendiculars $C D, c d$, meeting the figure $D E S$ in D, d. Join $S D, S d, S K, S k$, and draw $D d$ meeting the axis $A S$ in T, and thereon let fall the perpendicular $S r$.
CASE I. If the figure $D E S$ is a circle or a rectangular hyperbola, bifeet its tranfverfe diameter $A S$ in O, and $S O$ will be half the latus rectum. And becaure $T C$ is to $T D$ as $C c$ to $D d$, and $T D$ to $T S$ as $C D$ to $S r_{;}$ex aquo $T C$ will be to $T S$, as $C D \times C c$ to $S r \times D d$. But (by cor. I. prop. 33) $T C$ is to $T S$ as $A C$ to $A O$, to wit, if in the coalefcence of the points D, d, the ultimate ratio's of the lines are taken. Wherefore AC is to $A O$ or $S K$ as $C D \times C c$ to $S r_{\times} D d$. Farther, the velocity of the defcending body in C is to the velocity of a body defrribing a circle about

160 Matbematical Principles Book I.

the centre S, at the interval $S C$, in the fubduplicate ratio of $A C$ to $A O$ or $S K$ (by prop. 33.) and this velocity is to the velocity of a body deferibing the circle $O K k$ in the fubduplicate ratio of $S K$ to $S C$ (by cor. 6. prop. 4.) and ex aquo, the firft velocity to the laft, that is the little line $C c$ to the arc $K k$, in the fubduplicare ratio of $A C$ to $S C$, that is in the ratio of $A C$ to $C D$. Wherefore $C D \times C c$ is equal to $A C \times K k$, and confequently $A C$ to $S K$ as $A C \times K k$ to $S r \times D d$, and thence $S K \times K k$ equal to $S r \times D d$, and $\frac{1}{2} S K \times K k$ equal to $\frac{1}{2} S T \times D d$, that is, the area $K S k$ equal to the area $S D d$. Therefore in every moment of time two equal particles, $K S k$ and $S D d$, of areas are generated which, if their magnitude is diminifhed and their number increafed in infinitum, obtain the ratio of equality, and confequently (by cor. lem. 4.) the whole areas together generated are always equal. O. E. D.

Case 2. But if the figure $D E S$ (fig.2.) is a parabola, we thall find as above $C D \times C C$ to $S r \times D d$ as $T C$ to $T S$, that is, as 2 to 1 ; and that therefore $\frac{1}{4} C D \times C c$ is equal to $\frac{1}{2} S r \times D d$. But the velocity of the falling body in C is equal to the velocity with which a circle may be uniformly defrribed at the interval $\frac{1}{2} S C$, (by prop. 34) And this velocity to the velocity with which a circle may be defcribed with the radius $S K$, that is, the little line $C c$ to the arc $K k$, is (by cor. 5. prop. 4.) in the fubduplicate ratio of $S K$ to $\frac{1}{2} S C$; that is, in the ratio of $S K$ to $\frac{1}{2} C D$. Wherefore $\frac{1}{2} S K \times K k$ is equal to $\frac{1}{4} C D \times C c$, and therefore equal to $\frac{1}{2} S r \times D d$; that is, the area $K S k$ is equal to the area $S D d$ as above. Q. E. D.

Sect. VII. of Natural Pbilofopby. 16r

Proposition XXXVI. Problem XXV.
To determine the times of the defcent of a body falling from a given flace A. Pl. 16. Fig. 3.

Upon the diameter $A S$, the diffance of the body from the centre at the beginning, defrribe the femi-circle $A D S$, as likewife the femi-circle $O_{K H}$ equal thereto, about the centre \mathcal{S}. From any place C of the body, erect the ordinate $C D$. Join $S D$, and make the fetor $O S K$ equal to the area $A S D$. It is evident by prop. 35 . that the body in falling will defrribe the fpace $A C$ in the fame time in which another body, uniformly revolving about the centre S, may defribe the arc OK. Q. E. F.

Proposition XXXVII. Problem XXVI.

To define the times of the afient or defcent of a body projected apivards or dozenwards from a given place. Pl. 16. Fig. 4.

Suppofe the body to go off from the given place G, in the direction of the line $G S$, with any velocity. In the duplicate ratio of this velocity to the uniform velocity in a circle, with which the body may revolve about we cenM

162 Mathematical Principles Book
ore S at the given interval $S G$, take $G A$ to $\frac{1}{2} A$. If that ratio is the fame as of the number 21 I the point A is infinitely remote; in which a a parabola is to be defrribed with any la us rectum to the vertex S, and axis $S G$; as appears by prof 34. But if that ratio is lefs or greater than thin ratio of 2 to 1 , in the former cafe a circle, in the latter a rectangular hyperbola, is to be defrribed on the diameter $S A$; as appears by prop. 33. Then about the centre \mathcal{S}, with an interval equal to half the lotus rectum, defrribe the circle $H k K$, and at the place G of the afcending or defending body, and at any other place C, erect the perpendiculars $G I$, $C D$; meeting the conic fection or circle in I and D. Then joining $S I, S D$, let the factors $H S K, H S k$ be made equal to the ferments SEIS, SEDS, and by prop. 35 . the body G will defrribe the face $G C$ in the fame time in which the body K may deferibe the arc $K k$. Q. E. F.

Proposition XXXVIII. Theorem XII.

Sutporing that the centripetal force is proportional to the altitude or diane of places from the centre, I lav, that the times and velocities of falling bodies, and the Spaces webich they difritz, are refpecizively proportional to the arcs, and the right and verjedfines of the airs. Pl. 17. Fig. 1.

Suppose the body to fall from any pace A in the right line $A S$; and about the centre of force S

Plate XIT. Vol.I.P. C_{2}.

5.69.2.27.100

$\overbrace{i}+\frac{\mathrm{H}}{\mathrm{H}}$.
Fig. 3.p.161.

Sect. VII. of Natural Pbilofophy. 163 with the interval $A S$, defcribe the quadrant of a cirche $A E$; and let $C D$ be the right line of any arc $A D$; and the body A will in the time $A D$ in folling defernbe the face A^{\prime}, and in the place C will acquire the velocity $C D$.
This is demonftrated the fame way from prop: 10. as prop. 32. was demonfltated from prop. 11.

Cor. i. Hence the times are equal in which one body falling from the place A arrives at the centre \mathcal{S}, and another body revolving deferibes the quadrantal arc $A D E$.

Cor. 2. Wherefore all the times are equal in which bodies falling from whatfoever places arrive at the centre. For all the periodic times of revalving bodies are equal, by cor. 3. prop. 4.

Proposition XXXIX. Problem XXVII,

Srppoing a centripetc! force of any kind, and granting the quadratures of curvilinear figures; it is required to find the velocity of a body, ascending or defending in a right line, in the feveral places through which it paffes; as aldo the time in which it will arrive at any place; And vice vierSa.

Suppose the body E (Pl. 17. Fig. 2.) to fall from any place A in the right line $A D E C$; and from us place E imagine a perpendicular $E G$

164 Mathematical Principies Book I. a)ways erected, proportional to the centripetal force in that place tending to the centre C; and let $B F G$ be a curve line, the locus of the point G. And in the beginning of the motion fuppofe $E G$ to coincide with the perpendicular $A B$; and the velocity of the body in any place E will be as a right line whofe power is the curvilinear area $A B G E$. Q. E. I.

In $E G$ take $E M$ reciprocally proportional to a right line whofe power is the area $A B G E$, and let $V L M$ be a curve line wherein the point M is always placed, and to which the right line $A B$ produced is an afymptote, and the time in which the body in falling defribes the line $A E$, will be as the curvilinear area $A B T V M E$. Q.E.I.

For in the right line $A E$ let there be taken the very fmall line $D E$ of a given length, and let $D L F$ be the place of the line $E M G$, when the body was in D; and if the centripetal force be fuch, that a right line whofe power is the area $A B G E$, is as the velocity of the defcending body, the area it felf will be as the fquare of that velocity; that is, if for the velocities in D and E we write V and $\mathrm{V}-1 \mathrm{I}$, the area $A B F D$ will be as VV , and the area $A B G E$ as $\mathrm{V} \mathrm{V}_{-1} 2 \mathrm{VI}-\mid \mathrm{II}$; and by divifion the area $D F G E$ as $2 \mathrm{VI}-\mathrm{II}$, and therefore $\frac{D F G E}{D E}$ will be as $\frac{2 \mathrm{VI-1} \mathrm{II}}{D E}$; that is, if we take the firft ratio's of thofe quantities when juft nafeent, the length $D F$ is as the quantity $\frac{2 V I}{D E}$ and therefore alfo as half that quantity $\frac{I \times V}{D E}$. But the time, in which the body in

falling

Sect. VII. of Nataral Plilofoplly. 1 K5 falling defrribes the very fmall line $D E$ is as that line direfly and the velocity V inverfely, and the force will be as the increment I of the velocity directly and the time inverfely, and cherefore if we take the firft ratio's when thofe quantities are juft nafcens as $\frac{\mathrm{I} \times \mathrm{V}}{D E}$, that is as the length $D F$. Therefore a force proportional to $D F$ or $E G$ will caufe the body to defcend with a velocity that is as the right line whofe power is the area ABGE. U.E.D.

Moreover fince the time, in which a very frall line $D E$ of a given length may be defrribed, is as the velocity inverfely, and therffore alfo inverfely as a right line whofe fquare is cqual to the area $A B F D$; and fince the line $D L$, and by confequence the nafcent area $D L M E$, will be as the fame right line inverfely: the time will be as the area $D L M E$, and the fum of all the times will be as the fum of all the area's; that is (by cor. lem. 4.) the whole time in which the line $A E$ is deffribed will be as the whole area ATVME. Q. E. D,

Cor. i. Let P be the place from whence a body ought to fall, fo as that when urged by any known uniform centripecal force (fuch as gravity is vulgarly fuppofed to be) it may acquire in the place D a velocity, equal to the velocity which another body, falling by any force whatever, hath acquired in that place D. In the perpendicular $D F$ let there be taken $D R$, which may be to $D F$ as that uniform force to the other force in the place D. Compleat the retangle $P D R Q$, and cut off the area $A B F D$ equal M 3

166 Mathematical Principles Book I.

to that rectangle. Then A will be the place from whence the other body fell. For compleating the rectangle $D R S E$, fince the area $A b F D$ is to the area $D F G E$ as VV to 2 VI , and therefore as $\frac{1}{2} \mathrm{~V}$ to I , that is, as half the whole velocity to the increment of the velocity of the body falling by the unequable force; and in like manner the area $P \cup R D$ to the area $D R S E$, as half the whole velocity to the increment of the velocity of the body falling by the uniform force; and fince thafe increments (by reafon of the equality of the nafcent times) are as the generating forces, that is, as the ordinates $D F, D R$, and confequently as the nafcent area's $D F G F, D R S E$; therefore ex guo the whole areas $A B F D, P Q R D$ will be to one another as the halves of the whole velocities, and therefore, becaufe the velocities are equal, they become equal alfo.
Cor. 2. Whence if any body be projeted either upwards or downwards with a given velocity from any place D, and there be given the law of centripetal force acting on it, its velocity will be found in any other place as e, by erecting the ordinate eg, and taking that velocity to the velocity in the place D, as a right line whofe power is the retangle $P Q R D$, eicher increafed by the curvilinear area $D F$ ge, if the place c is below the place D, or diminifhed by the fame area $D F g$ if it be higher, is to the right line whbore power is the rectangle $P Q R D$ alone.

Cor. 3. The time is alfo known by crecting the ordinate em reciprocally proportional to the fquare root of $P(? R D$ or $-D F g e$, and taking the time in which the body has defribed the line De, to the time in which another body has fallen with an

Sect. VII. of Natural Pbilosppy. 167 uniform force from P, and in falling arrived at D, in the proportion of the curvilinear area $D L m e$ to the rectangle $2 P D \times D L$. For the time in which a body falling with an uniform force hath defcribed the line $P D$, is to the time in which the fame body has defrribed the line $P E$, in the fubduplicate ratio of $P D$ to $P E$; that is (the very tmall line $D E$ being juft na(cent) in the ratio of $P D$ to $P D+\frac{1}{2} D E$, or $2 P D$ to $2 P D+D E$, and by divifion to the time in which the body hath detcribed the fmall line $D E$, as $2 / D$ to $D E$, and therefore as the rectangle $2 / D \times D L$ to the area $D L M E$; and the time in which both the bodies defcribed the very fmall line $D E$ is to the time in which the body moving unequably hath defcribed the line $D e$, as the area $D L M E$ to the area $D L m e ;$ and ex aquo the firlt mentioned of thefe times is to the laft as the rectangle $2 P D \times D L$ to the area $D L m e$.

M 4
SECTION

SECTION VIII.

Of the invention of orbits wherein bodies will revolve, being atted upon by any fort of cen:ripetal force.

Proposition XL. Theorem XIII.

If a body, agled ufon by any centripetal force, is any bowe moved, and anotber body afcends or defcends in a right line; and their velocities be equal in any one cafe of equal altitudes, their velocities will be alfo equal at all equal altitudes.

Let a body defcend from A (Pl. 17. Fig. 3.) through D and E, to the centre C; and let another body move from V in the curve line VIKk. From the centre \mathcal{C}, with any diftances, defrribe the concentric circles $D I, E K$, meeting the right line $A C$ in D and E, and the curve $V I K$ in I and K. Draw

Srct. VIII. of Natural Philnfotbr. I69
Draw IC meeting $K E$ in N, and on $J K$ let fall the perpendicular $N T$; and let the interval $D E$ or $I N$, betwcen the circumferences of the circles be very Imall; and imagine the bodies in D and I to have equal velocities. Then becaufe the diftances $C D$ and $C I$ are equal, the centripetal forces in D and I will be alfo equal. Let thofe forces be exprefs'd by the equal lineolx $D E$ and $I N$; and let the force $I N$ (by cor 2. of the laws of motion) be refolved into two others, $N T$ and $I T$. Then the force $N T$ acting in the direction of the line $N T$ perpendicular to the path ITK of the body, will not at all affect or change the velocity of the body in that path, but only draw it afide from a rectilinear courfe, and make it deflect perpetually from the tangent of the orbir, and proceed in the curvilinear path $I / K k$. That whole force therefore will be feent in producing this effect; but the other force IT, acting in the direction of the courfe of the body, will be all employed in accelerating it; and in the leaft given time will produce an acceleration proportional to it felf. Therefore the accelerations of the bodies in D and I produced in equal times, are as the lines $D E, I T$; (if we take the firft ratio's of the nafcent lines $D E, I N, I K, I T, N T$;) and in unequal times as thofe lines and the times conjuncily. But the times in which $D E$ and $I K$ are defaribed, are, by reafon of the equal velocities (in D and I) as the fpaces defcribed $D E$ and $I K$, and therefore the accelerations in the courfe of the bodies through the lines $D E$ and $I K$, are as $D E$ and $I T$, and $D E$ and $I K$ conjunctly; that is, as the fquare of $D E$ to the rectangle $I T$ into $I K$. But the rectangle $I T \times I K$ is equal to the fquare of $I N$, that
is

170 Mathematical Princifles Book I.

is equal to the fquare of $D E$, and therefore the accelerations generated in the paffige of the bodies from D and I to F and K are equal. Therefore the velocities of the bodies in E and K are allo equal: and by the fame reafoning they will always be found equal in any fublequent equal diffances. Q.E. D.

By the fame reafoning, bodies of equal velocities and equal diftances from the centre will be cqually retarded in their afcent to tqual diftances. O, E. D.
Cor. I. Therefore if a body either ofcillates by hanging to a ftring, or by any polifhed and perfeetly mooth impediment is forced to move in a curve line; and another body afcends or d:fcends in a right line, and their velocities be equal at any one equal altitude; their velocities will be alfo equal at all other equal altitudes. For, by the ftring of the pendulous body, or by the impediment of a veffel perfectly fmooth, the fame thing will be effeted, as by the tranfverfe force NT. The body is neither accelerated nor retarded by it, but only is obliged to quit its rectilinear courfe.
Cor. 2. Suppofe the quantity P to be the greateft diffance from the centre to which a body can afcend, whether it be ofcillating, or revolving in a trajeCtory, and fo the fame projetted upwards from any point of a trjeefory with the velocity it has in that point. Let the quantity A be the diffance of the body from the centre in any other point of the orbit; and let the centripetal force be always as the power $\mathrm{A}^{n \cdots-1}$ of the quantity A , the index of which power $n-1$, is any number n diminifhed by unity. Then the velocity in every altitude A will be as $\sqrt{11^{n-A n}}$, and therefore will be given. For by prop. 39. the velocity of

Sec.t. VIII. of Natural Pbilofophy. 171
a body afcending and defcending in a right line is in that very ratio.

```
Proposition XLI. Problem XXVIII.
```

Suppofing a centripetal force of any kind, and granting the quadratures of curwilinear figures, it is required to find, as weeli the trajectories in rebich bodies reill move, as the times of their motions in the trajeciories found.

Let any centripetal force tend to the centre \boldsymbol{C}, (F I. 17. Fig. 4.) and let it be required to find the tıajetory $\hat{V} I K k$. Let there be given the circle $V R$, defrribed from the centre C with any interval $\boldsymbol{C} V$; and from the fame centre defrribe any other circles $I D, K E$ cutting the trajectory in I and K, and the right line $C V$ in D and E. Then draw the right line CNIX cutting the circles $K E, V R$ in N and X, and the right line $C K Y$ meeting the circle $V R$ in Y. Let the points I and K be indefinitely near; and let the body go on from V through I and K to k; and let the point A be the place from whence another body is to fall, fo as in the place D to acquire a velociry equal to the velocity of the firft body in I. And things remaining as in prop. 39. the lineola $I K$, delcribed in the leaft given time will be as the velocity, and therefore as the right line whofe power is the area $A B F D$, and the triangle-ICK proportional to the time will be given, and therefore $K N$ will be reciprocally

172 Mathematical Principles Book I.

 ciprocally as the altitude $I C$; that is (if there be given any quantity Q and the altitude $I C$ be called A) as $\frac{\mathrm{Q}}{\mathrm{A}}$. This quantity $\frac{\mathrm{Q}}{\mathrm{A}}$ call Z , and fuppofe the magnitude of \mathbf{Q} to be fuch that in fome care $\sqrt{A B F D}$ may be to Z as $I K$ to $K N$, and then in all cafes $\sqrt{ } A B F D$ will be to Z as $I K$ to $K N$, and $A B F D$ to ZZ as $I K^{2}$ to $K N^{2}$, and by divifion $A B F D-\mathrm{ZZ}$ to ZZ as $I N^{2}$ to $K N^{2}$, and therefore $\sqrt{A B F D-\mathrm{ZZ}}$ to Z or $\frac{\mathrm{Q}}{\mathrm{A}}$ as $I N$ to $K N$, and therefore $\mathrm{A} \times K N$ will be equal to $\frac{\mathrm{Q} \times I N}{\sqrt{A} B \overline{F D}-\mathrm{ZZ}}$. Therefore fince $X X \times X C$ is to $\mathrm{A} \times K N$ as $C X^{2}$ to A A the retangle $X Y \times X C$ $\mathrm{Q} \times I N \times C X^{2}$will be equal to $\frac{\mathrm{Q} \times 1 N \times C X^{2}}{\mathrm{AA} \sqrt{A B F D} \overline{\mathrm{ZZ}}}$. Therefore in the perpendicular $D F$ let there be taken cantinually $D b, D c$ equal to $\frac{\mathrm{Q}}{2 \sqrt{\bar{A} B \overline{F D-Z Z}}}$, $\frac{\mathrm{Q} \times \mathrm{C}^{2}}{2 \mathrm{AA} \sqrt{A B F D-\mathrm{ZZ}}}$ refpectively, and let the curve lines $a b, a c$, the toci of the points b and c, be defrribed: and from the point V, let the perpendicular $V a$ be erected to the line $A C$, cutting off the curvilinear area's $V D b a, V D c a$, and let the ordinates $E z, E x$, be erected alfo. Then becaufe the reCtangle $D b \times I N$ or $D b z E$ is equal to half the rectangle $\mathrm{A} \times K N$ or to the triangle $I C K$; and the refangle $D c \times I N$ or $D c x E$ is equal to half the rectengle $X X \times X C$ or to the triangle $X C r$; that is, becaufe the nafcent particles $D 6 \approx E, I C K$ of the $V C X$ are always equal; therefore the generated area $V D b a$ will be equal to the generated area VIC, and therefore proportional to the time; and the generated area $V D c a$ is equal to the generated feetor $V C X$. If therefore any time be given during which the body has been moving from V, there will be alfo given the area proportional to it $V D b a$; and thence will be given the altitude of the body $C D$ or $C I$; and the area $V D c a$, and the fector $V C X$ equal thereto, together with its angle $V C I$. But the angle $V C I$, and the altitude $C I$ being given, there is alfo given the place I, in which the body will be found at the end of that time. O. E. I.

Cor. 1 . Hence the greateft and leaft altitudes of the bodies, that is the apfides of the trajectories, may be found very readily. For the aplides are thofe points in which a riglt line IC drawn thro the centre falls perpendicularly upon the trajectory VIK; which comes to pals when the right lines $I K$ and $N K$ become equal; that is, when the area $A B F D$ is equal to ZZ .

Crr. 2. So alfo, the angle $K I N$ in which the trajectory at any place cuts the line $I C$, may be readily found by the given altitude $I C$ of the body: to wit, by making the fine of that angle to radius as $K N$ to $I K$; that is as Z to the fquare root of the area $A B F D$.

Cor. 3. If to the centre C (Pl . 17. Fig. 5.) and the principal vertex V there be defrribed a conic fection $V R S$; and from any point thereof as R, there be drawn the tangent $R T$ meeting the axe $C V$ indefinitely produced, in the point

174 Mathematical Principles Book \mathbf{I}. T; and then, joining $C R$, there be drawn the right line $C P$, equal to the abfiffa $C T$, making an angle $V C P$. proportional to the fector $V C R$; and if a centripetal force, reciprocally proportional to the cubes of the diftances of the places from the centre, tends to the centre C; and from the place V there fers out a body with a juft velocity in the direction of a line perpendicular to the right line $C V$: that body will proceed in a trajectory $V P Q$, which the point P will always touch; and therefore if the conic fection $V R S$ be an hyperbola, the body will defcend to the centre; but if it be an ellipfis it will afcend perpetually, and go farther and farther off in infinitum. And on the contrary, if a body endued with any velocity goes off from the place V, and according as it begins either to defcend obliquely to the centre or afcends obliquely from it, the figure $V R S$ be either an hyperbola or an ellipfis, the trajectory may be found by increafing or diminifhing the angle $V C P$ in a given ratio. And the centripetal force becoming centrifugal, the body will afcend obliquely in the trajectory $V P Q$, which is found by taking the angle $V C P$ proportional to the elliptic feetor $V R C$, and the length $C P$ equal to the length $C T$, as before. All thefe things follow from the foregoing propofition, by the quadrature of a certain curve, the invention of which, as being eafy enough, for brevity's fake I omit.

Proo

Stct $\mathrm{C}^{\mathrm{T}}, \mathrm{III}$. of Natural Pbilofophy. 175

proposition XLII. problem XXIX.

The lare of centripetal force being given, it is required to find the motion of a body fetting out from a given place, weith a given velocity, in the direction of a given right line.

Suppofe the fame things as in the three preceding propofitions; and let the body go off from the place I, (Pl. 17. Fig. 6.) in the diretion of the little line $I K$, with the fame velocity as another body, by falling with an uniform centripetal force from the place P, may acquire in D; and let this uniform force be to the force with which the body is at firft urged in I, as $D R$ to $D F$. Let the body go on towards k; and about the centre C with the interval $C k$, defrribe the circle $k e$, meeting the right line $P D$ in e, and let there be erected the lines eg, ev, exv, ordinately applied to the curves $B F g, a b v, a c y$. From the given rectangle $P D R \cup$ and the given law of cencripetal force, by which the Girft body is afted on, the curve line $B F g$ is alfo given, by the conftruction of prob. 27 . and its cor. I . Then from the given angle CIK is given the proportion of the nafcent lines $I K, K N$; and thence by the conftrution of prob. 28. there is given the quantity Q, with the curve lines $a b v, a c \nu$; and therefore, at the end of any time Dbve, there is given both the altitude of the body Ce or $C k$, and the area $D c \geqslant v e$, with the fector equal

176 Matherizatical Prizatifles Book I. equal to it $X C y$, the angle $I C K$, and the place k, in which the body will then be found. U.E.I.

We fuppore in thete propofitions the centripetal force to vary in its recefs from the centre according to fome law, which any one may imagine at pleafure; but at equal diftances from the centre to be every where the fame.

I have hitherto confidered the motions of bodies in immoveable orbits. It remains now to add fomething concerning their motions in orbits which re* volve round the centres of force.

Sect. IX. of Natural Pbilofopby. 177

Section IX.

Of the motion of bodies in moveable orbits; and of the motion of the apsides.

Proposition XLIII. Problem XXX.

It is required to make a body move, in a trajectory that revolves about the centhe of force, in the fame manner as another body in the fame trajectory at ref.

In the orbit $V P K$ ($P 1$. 18. Fig. 1.) given by pofition, let the body P revolve, proceeding from V towards K. From the centre C let there be continually drawn $C p$, equal to $C P$, making the angle $V C p$ proportional to the angle $V C P$; and the area which the line C_{p} defribes, will be to the area $V C P$ which the line $C P$ defcribes at the fame time, as the velocity of the defribing line C_{P},
${ }_{178}$ Mathematical Primotiples Book 1.
to the velocity of the defribing line $C P$; that is, as the angle $V C_{p}$ to the angle $V C P$, therefore in a given ratio, and therefore proportional to the time. Since then the area deferibed by the line C_{p} in an immoveable plane is proportional to the time, it is manifeft that a body, being acted upon by a jut quantity of centripeal force, may revolve with the point p in the curve line which the fame point p, by the methad jut now explained, may be made to defrribe in an immoveable plane. Make the angle $V C n$ equal to the angle $P C_{p}$, and the line C_{n} equal to $C V$, and the figure $n C_{p}$ equal to the figure $V C P$, and the body being always in the point p, will move in the perimeter of the revolving figure $u C_{p}$, and will defribe its (revolving) arc $u p$ in the fame time that the other body P defribes the fimilar and equal arc $V P$ in the quiefcent figure $V P^{P}$. Find then by cor. 5. prop. 6. the centripetal force by which a body may be made to revolve in the curve line which the point p defribes in an immoveable plane, and the problem will be folved. O. E. F.

Proposition XLIV. Theorem XIV.

The difference of the forces, by webich two bodies may le made to move equal$l y$, one in a guiefcent, the other in the fame orbit revolving, is in a tiplicate ratio of their common altitudes inversely.
Let the parts of the quiefcent orbit $V P, P K$, (Pl. 18. Fig. 2.) be fimilar and equal to the

Sect. IX. of Nitural Plilorophy. 179 parts of the revolving orbit u_{p}, p_{k}; and let the diftance of the points P and K be fuppofed of the utmoft fmallnefs. Let fall a perpendicular $k r$ from the point k to the right line $p C$, and produce it to m, fo that $m r$ may be to $k r$ as the angle $V C_{P}$ to the angle $V C P$. Becaufe the altitudes of the bodies, $P^{\prime} C$ and $p C, K C$ and $k C$, are always equal, it is manifeft that the increments or decrements of the lines $P C$ and $p C$ are always equal; and therefore if each of the feveral motions of the bodies in the places P and p be refolved into two, (by cor. 2. of the laws of motion) one of which is direted towards the center, or according to the lines $P C, p C$, and the other, tranfverfe to the former, hath a direction perpendicular to the lines $P C$ and $p C$; the motions towards the centre will be equal, and the tranfiverfe motion of the body p will be to the tranfverfe motion of the body P, as the angular motion of the line $P C$ to the angular motion of the line $P C$; that is, as the angle $V C_{p}$ to the angle $V C P$. Therefore at the fame time that the body P, by both its motions, comes to the point K, the body p, having an equal motion towards the centre, will be equally moved from p towards C, and chercfore that time being expired, it will be found fomewhere in the line $m k r$, which, paffing through the point k, is perpendicular to the line $p C_{\text {; }}$; and by its tranfuerfe motion, will acquire a diftance from the line $p C$, that will be to the diftance which the other body r acquires from the line $F C$, as the tranfverfe motion of the body p, to the rranfverfe motion of the other body P. Therefore fince $k r$ is $e-$ qual to the diftance which the body P acquires from the line $P C$, and $m r$ is to $k r$ as the an- verfe motion of the body p, to the tranfverfe motion of the body P : it is manifeft that the body p, at the expiration of that time, will be found in the place m. Thefe things will be fo, if the bodies p and P are equally moved in the directions of the lines $P C$ and $P C$, and are therefore urged with equal forces in thofe directions. But if we take an angle $p C n$ that is to the angle $p C k$ as the angle $V C_{P}$, to the ancle $V C P$, and $n C$ be equal to $k C$, in that cafe the body p at the expiration of the time will really be in n; and is therefore urged with a greater force than the body P, if the angle $n C_{p}$ is greater than the angle $k C_{p}$, that is, if the orbit $u p k$ move either in confeguentia, or in antecedentia with a celerity greater than the double of that with which the line $C P$ moves in confequentia; and with a lefs force if the orbit moves flower in antecedentia. And the difference of the forces will be as the interval $m n$ of the places through which the body would be carried by the action of that difference in that given fpace of time. About the centre C with the interval $C n$ or $C k$ fuppofe a circle defcribed catting the lines $m r, m n$ produced in s and t, and the rectangle $m n \times m t$ will be equal to the rectangle $m k \times m s$, and therefore $m n$ will be equal to $\frac{m k \times m s}{m t}$. But fince the triangles $p C k, p C n$, in a given time, are of a given magnitude, $k r$ and $m r$, and their difference $m k$, and their fum $m s$, are reciprocally as the altitude $p C$, and therefore the rectangle $m k \times m s$ is reciprocally as the fquare of the altttude $p C$. But moreover $m t$ is directly as $\frac{1}{2} m t$, that is, as the altituds

S\&ct. IX. of Natural Pbilofopby. 181 titude $p C$. Thefe are the firft ratio's of the nafcent lines; and hence $\frac{m k \times m s}{m t}$, that is, the nafrent lineola m, and the difference of the forces proportional thereto, are reciprocally as the cube of the alititude p C. Q. F. D.

Cor. I. Hence the difference of the forces in the places P and p, or K and k, is to the force with which a body may revolve with a circular motion from R to K, in the fame time that the body P in an immoveable orb defrribes the arc $P K$, as the nafcent line $m n$ to the verfed fine of the nafcent arc $R K$, that is as $\frac{m k \times m s}{m t}$ to $\frac{r k^{2}}{2 k C}$, or as $m k \times m s$ to the fquare of $r k$; that is, if we take given quantities F and G in the fame ratio to one another as the angle $V C P$ bears to the angle $V \subset P$, as GG-FF to FF. And therefore if from the centre C with any diftance $C P$ or C_{p}, there be defreibed a circular fector equal to the whole area $V F C$, which the body revo!ving in an immoveable orbir, has by a radius drawn to the centre defribed in any certain time; the difference of the forces, with which the body P revolves in an immoveable orbit and the body p in a moveable orbit, will be to the centripetal force, with which another body by a radius drawn to the centre can uniformly defcribe that feztor in the fame time as the arca $V P C$ is deffribed, as GG-FF to FF. For that fector and the area $p C k$ are to one another as the times in which they are defrribed.

$$
\mathrm{N}_{3} \quad \text { Cor: }
$$

182 Mathematical Principles Book I.
Cor. 2. If the orbit $V P K$ be an ellipfis having its focus C, and its thigheftapfis V, and we fuppole the ellipfis upk fimilar and equal to it, fo that $p C$ may be always equal to $P C$, and the angle $V C_{P}$ be to the angle $V C P$ in the given ratio of \mathbf{G} to \mathbf{F}; and for the alcitude $P C$ or $p C$ we put A , and 2 R for the latus reftum of the ellipfis; the force with which a body may be made to revolve in a moveable ellipfis will be as $\frac{F F}{A A}+\frac{R G G-R F F}{A^{3}}$ and vice verfa. Let the force with which a body may revolve in an immoveable ellipfis, be expreffed by the quantity $\frac{\mathrm{FF}}{\mathrm{AA}}$, and the force in V will be $\frac{\mathrm{FF}}{C V^{2}}$. But the force with which a body may revolve in a circle at the diffance $C V$, with the fame velocity as a body revolving in an ellipfis has in V, is to the force with which a body revolving in an ellipfis is acted upon in the apfis ν, as half the latus rectum of the ellipfis, to the femi-diameter CV of the circle, and therefore is as $\frac{R F F}{C V^{3}}$; and the force which is to this as GG-FF to FF , is as $\frac{\mathrm{RGG}-\mathrm{PFF}}{C V^{3}}$: and this force (by cor. 1. of this prop.) is the difference of the forces in V, with which the body P revolves in the immoveable ecllipfis $V F K$, and the body P in the moveable ellipfis $u p k$. Thercfore fince by this prop. that difference at any other altitude A is to it felf at the altitude $C V$ as $\frac{1}{\mathrm{~A}^{3}}$ to $\frac{1}{C V^{3}}$, the
fame

S:ct. IX. of Natural Philofoph. 183 fame difference in every alcitude A will be as $\frac{R G G-R F F}{A^{3}}$. Therefore to the force $\frac{F F}{A A}$,
by which the body may revolve in an immoveable ellipfis $V P K$, add the excefs $\frac{\text { RGG-RFF }}{A^{3}}$ and the fum will be the whole force $\frac{\mathrm{FF}}{\mathrm{AA}}$ $-1-\frac{R G G-R F F}{A^{3}}$ by which a body may revolve in the fame time in the moveable ellipfis $u p k$.

Cor. 3. In the fame manner it will be found that if the immoveable oobic $V P K$ be an ellipfis having its centre in the centre of the forces C; and there be fuppofed a moveable ellipfis upk, fimilar, equal, and concentrical to it; and $2 R$ be the principal latus rectum of that ellipfis, and 2 T the latus tranfverfum or greater axis; and the angle $V C p$ be continually to the angle $V C P$ as G to F ; the forces with which bodies may revolve in the immoveable and moveable ellipfis in equal times, will be as $\frac{F F A}{T^{3}}$ and $\frac{F F A}{T^{3}}+\frac{R G G-R F F}{A^{3}}$ repeCtively.
Cor. 4. And univerally, if the greateft altitude $C V$ of the body be called T , and the radius of the curvature which the orbit $V P K$ has in V, that is, the radius of a circle equally curve, be called R , and the centripetal force with which a body may revolve in any immoveable trajeftory $V P K$ at the place V, be called $\frac{\mathrm{VFF}}{\mathrm{TT}}$, and in other places P be indefinitely ftiled X ; and the altitude $C P$ be called N 4

184 Mathematical Principles Book I.
A, and G be taken to F in the given ratio of the angle $V C_{p}$ to the angle $V C P$: the centripetal force with which the fame body will perform the fame motions in the fame time in the fame trajeEtory upk revolving with a circular motion, will be as she fum of the forces $\mathrm{X}-1 \frac{\mathrm{VRGG}-\mathrm{VRFF}}{\mathrm{A}^{3}}$.
Cor. 5. Therefore the motion of a body in an immoveable orbit being given, its angular motion round the centre of the forces may be increafed or diminifhed in a given ratio, and thence new immoveable orbits may be found in which bodies may revolve with new centripetal forces.
Cor. σ. Therefore if there be ereted (Fl. 18. Fig. 3.) the line $V P$ of an indeterminate length, perpendicular to the line $C V$ given by pofition, and $C P$ be drawn, and C_{P} equal to it, making the angle $V C P$ having a given ratio to the angle $V C P$; the force with which a body may revolve in the curve line $V_{p} k$, which the point p is continually defcribing, will be reciprocally as the cube of the altitude $C p$. For the body P, by its vis inertix alone, no other force impelling it, will proceed uniformly in the right line $V P$. Add then a force tending to the centre C reciprocally as the cube of the alritude $C P$ or C_{p}, and (by what was juft demonftrated) the body will deffet from the rectilinear motion into the curve line $V \rho p$. But this curve $V_{P} k$ is the fame with the curve $V P Q$ found in cor. 3. prop. 4I. in which, I faid, bodies attratted with fuch forces would afcend obliquely.

Pa

SECT. IX. of Natural Pbilofophy. 185
Próposition XLV. Problem XXXI.
To find the motion of the atfides in orbits approaching very near to circles.

This problem is folved arithmetically by reducing the orbit, which a body revolving in a moveable ellipfis (as in cor. 2 and 3 of the above prop.) defcribes in an immoveable plane, to the figure of the orbit whofe apfides are required; and then reeking the apfides of the orbit which that body defcribes in an immoveable plane. But orbits acquire the fame figure, if the centripetal forces with which they are defcribed, compared between themfelves, are made proportional at equal altitudes. Let the point V be the higheft apfis, and write T for the greateft altitude CF , A for any other altitude $C P$ or C_{P}, and X for the difference of the altitudes $C V-C P$; and the force with which a body moves in an ellipfis revolving about its focus C (as in cor. 2.) and which in cor. 2. was as $\frac{F F}{A A}+\frac{R G G-R F F}{A^{3}}$, that is, as $\frac{\text { FFA }+ \text { RGG-RFF }}{A^{3}}$, by fubftituting T--X for A will becomeas $\frac{\text { RGG--RFF-TFF.-FFX }}{A^{3}}$.
In like manner any other centripetal force is to be reduced to a fraction whofe denominator is A^{3} and the numerators are to be made analogous by

186 Mathematical Principles Book I. collating together the homologous terms. This will be made plainer by examples.

Exam. i. Let us fuppofe the centripetal force to be uniform, and therefore as $\frac{A^{3}}{A^{3}}$, or, writing $T-X$ for A in the numerator, as $\frac{\mathrm{T}^{3}-3 \mathrm{TTX}-\mathrm{H}_{-3} \mathrm{TXX}-\mathrm{X}^{3}}{\mathrm{~A}^{3}}$ $\frac{T^{3}-3 T T X \cdot\left\{T X X-X^{3}\right.}{A^{3}}$. Then collating together the correfpondent terms of the numerators, that is, thofe that confift of given quantities, with thofe of given quantities, and thofe of quantities not given, with thofe of quantities not given, it will become RGG-RFF-1 TFF to T^{3} as -FFX to - $\mathrm{Z}^{\mathrm{T} T X-1-3 \mathrm{TXX}-\mathrm{X}^{3} .}$ or as -FF to - 3 TT - $3 \mathrm{TX}-\mathrm{XX}$. Now fince the orbit is fuppofed extreamly near to a circle, let it coincide with a circle, and becaufe in that cafe R and T become equal, and X is infinitely diminithed, the laft ratio's will be, as R G G to T^{3} fo - FF to - 3 TT , or as GG to T T fo FF to 3 TT , and again as GG to FF fo TT to 3 TT , that is, as 1 to 3 ; and therefore \mathbf{G} is to F , that is, the angle $V C_{p}$ to the angle $V C P$ as I to $\sqrt{ } 3$. Therefore fince the body, in an immoveable ellipfis, in defending from the upper to the lower apfis, defrribes an angle, if I may fo fpeak, of 180 deg. the other body in a moveable ellipfis, and therefore in the immoveable orbit we are treating of, will, in its defent from the upper to the lower apfis, defrribe an angle $V C_{p}$ of $\frac{180}{\sqrt{3}}$ deg. And this comes to pars by reafon of the

Sect. IX. of Natural Pi:ilofopl... 187
the likenefs of this orbit which a body acted upon by an uniform cencripetal force defrribes; and of that ob bit which a body performing its circuits in a revolving ellipfis will defribe in a quiefrent plane. By this collation of the terms, thefe orbits are made fimilar; not univerfally indeed, but then only when they approach very near to a circular figure. A body therefore revolving with an uniform centripetal force in an orbit nearly circular, will always defribe an angle of $\frac{180}{\sqrt{3}}$ deg. or 103 deg. 55 m .23 fec. at the centre; moving from the upper apfis to the lower apfis when it has once deffribed that angle, and thence returning to the upper apfis when it has defrribed that angle again; ann $f o$ on in infinitum.
Exam. 2. Suppofe the centripctal force to be as any power of the altitude A , as for example A^{n-3} or $\frac{\mathrm{A}^{n}}{\mathrm{~A}^{3}}$; where $n-3$ and n fignify any indices of powers whatever, whether integers on frattions, rational or furd, affirmative or negative. That numerator A^{n} or $\left.\overline{\mathrm{T}} \mathrm{X}\right|^{n}$ being reduced to an indeterminate feries by my method of converging feries, will become $\mathrm{T}^{n}-n \mathrm{XT}^{n-1}$ $\frac{n n-n}{2} \mathrm{XXT}^{n-2}$ ooc. And conferring thefe terms with the terms of the other numerator RGG-RFF- TFF-FFX, it becomes as RGG—RFF-1 TFF to T^{n} §o - FF to $-n \mathrm{~T}^{n-1}+\frac{n n-n}{2} \mathrm{XT}^{n-2}$ of. And ta king the laft ratio's where the orbits approach to circles,

188 Mathematical Principles Bock I. circles, it becomes as RGG to T^{n} fo -FF to
 $n \mathrm{~T}^{n-1}$ and again GG to FF fo T^{n-1} to $n \mathrm{~T}^{n-1}$, that is, as I to n; and therefore G is to F , that is the angle $V C P$ to the angle $V C P$ as 1 to $\sqrt{ } n$. Therefore fince the angle $V C P$, defrribed in the defcent of the body from the upper apfis to the lower apfis in an ellipfis, is of 180 deg. the angle $V C_{P}$, defrribed in the defent of the body from the upper apfis to the lower apfis in an orbit nearly circular which a body defrribes with a centripetal force proportional to the power $\mathrm{A}^{\boldsymbol{n}-3}$, will be equal to an angle of $\frac{180}{\sqrt{n}}$ deg. and this angle being repeated the body will return from the lower to the upper apfis, and fo on in infinitum. As if the centripetal force be as the diffance of the body from the centre, that is, as A, or $\frac{A^{4}}{A^{3}}, n$ will be equal to 4 , and $\sqrt{ } n$ equal to 2 ; and therefore the angle between the upper and the lower apfis will be equal to $\frac{180}{2}$ deg . or 90 deg. Therefore the body having performed a fourth part of one revolution will arrive at the lower apfis, and having performed another fourth part, will arrive at the upper apfis, and fo on by turns in infinitum. This appears alfo from prop. io. For a body atted on by this centripetal force will revolve in an immoveable ellipfis, whofe centre is the centre of force. If the centripetal force is reciprocally as the diftance, that is, directly as $\frac{1}{\mathrm{~A}}$ or $\frac{\mathrm{A}^{2}}{\mathrm{~A}^{3}}, n$ will be equal to 2 , and
there-

Sect. IX. of Natural Pbilofopby. 189 therefore the angle between the upper and lower apfis will be $\frac{180}{\sqrt{2}}$ deg. or $1: 7$ deg. 16 min .45 fec. and therefore a body revolving with fuch a force, will, by a perpecual repectition of this angle, tmove alternately from the upper to the lower, and from the lower to the upper apfis for ever. So allo if the centripetal force be reciprocally as the biquadrate root of the eleventh power of the altitude, that is reciprocally as $A \frac{11}{4}$ and therefore directly as $\frac{1}{\mathrm{~A}^{\frac{1}{4}+\frac{1}{4}}}$ or as $\frac{\mathrm{A}_{\frac{1}{4}}^{\mathrm{A}^{3}}}{}$, n will be equal to \ddagger. and $\frac{180}{\sqrt{ } n}$ deg. will be equal to 360 deg. and therefore the body parting from the upper apfis, and from thence perpetually defrending will arrive at the lower apfis when is has compleated one entise revolution; and thence afcending perpetually, when it has compleated another entire revolution it will arrive again at the upper apfis; and fo alternately for ever.
Exam. 3. Taking m and n for any indices of the powers of the alcitude, and b and c for any given numbers, fuppofe the renrripetal force to be as $\frac{b_{A m} \cdot c A^{n}}{A^{3}}$ that is, $25 \frac{b \text { intn } \frac{X_{1}}{}{ }^{m} \cdot c \text { inno }\left.\bar{T}\right|^{n}}{A^{3}}$ or (by the method of converging feries above-mentioned) $\frac{a s t m \cdot c T^{n}-m b \times \mathrm{X}^{m-1} n c \mathrm{XT}^{n-1}}{\mathrm{~A}^{3}}$ $+\frac{m m-m}{2} 6 \mathrm{XXT}^{m-2}-\frac{n n-n}{2} c \mathrm{XX} \mathrm{T}^{2}=-2$ ©r. and comparing the terms of the numerators,
igo Mathematical Principles Book I. there will arife RGG-RFF-TFF to
 $+\frac{m m-m}{2} b \mathrm{XT}^{m-2}-1 \frac{n n-n}{2} c \mathrm{XT}^{n-2} \sigma c$.
And taking the laft ratio's that arife when the orbits come to a circular form, there will come forth GG to $6 \mathrm{~T}^{m-1}-1-c \mathrm{~T}^{n-1}$ as FF to $m b T^{m-1}-1 n c T^{n-}$ ', and again GG to FF as $6 \mathrm{~T}^{m-1}+c \mathrm{~T}^{n-1}$ to $m 6 \mathrm{~T}^{n^{-}-1-1 n c} \mathrm{~T}^{2}=-$. This proportion, by expreffing the greateft altitude $C V$ or T arithmeically by unity, becomes, GG to FF as $b_{-1} c$ to $m b-n c$, and therefore as a to $\frac{m b+n c}{b+c}$. Whence G becomes to F, that is the angle $V C P$ to the angle $V C P$ as 1 to $\sqrt{ } \frac{m b-1 n c}{b-1}$. And therefore fince the angle $V C P$ berween the upper and the lower apfis, in an immovcable ellipfis, is of 180 deg . the angle $V C P$ between the fame apfides in an orbit which a body defribes with a centripetal force, that is as $\frac{b A^{m}-c A^{n}}{A^{3}}$ will be equal to an angle of $180 \sqrt{ } \frac{b-1-c}{m b-1-n c}$ deg. And by the fame reafoning if the centriperal force be as $\frac{b \mathrm{Am}-c \mathrm{~A}^{n}}{\mathrm{~A}^{3}}$ the angle between the apfides will be found equal to $180 \sqrt{\frac{b-c}{m b-n c}}$ deg. After the fame manner the problem is folved in more difficult cafes. The quantity to which the centripetal force is proportional, muft always be refolved into a converging
feries

Sect. IX. of Natural Pbilofophy. 191 feries whofe denominator is A^{3}. Then the given part of the numerator arifing from that operation is to be fuppofed in the fame ratio to that part of it which is not given, as the given part of this numerator RGG-RFF-TFF-FFX is to that part of the fame numerator which is not given. And taking away the fuperfluous quantities and writing unity for T , the proportion of G to F is obained

Cor. I. Hence if the centripetal force be as any power of the altitude, that power may be found from the motion of the apfides; and fo contrarywife. That is, if the whole angular motion, with which the body returns to the fame apfis, be to the angular motion of one revolution, or 360 deg . as any number as m to another as n, and the alcitude called A; the force will be as the power $\mathrm{A} \frac{n n}{m m}-3$ of the altitude A ; the index of which power is $\frac{n n}{m m}$-3. This appears by the fecond examples. Hence 'tis plain that the force in its recels from the centre cannot decreafe in a greater than a triplicate ratio of the altitude. A body revolving with fuch a force and parting from the apfis, if it once begins to defcend can never arrive at the lower apfis or leaft altitude, bur will defcend to the centre, defcribing the curve line treated of in cor. 3. prop. 41 . But if it Mould, at its parting from the lower apfis begin to afcend never fo little, it will afcend in infinitum and never come to the upper apfis; but will defcribe the curve line fpoken of in the fame cor. and cor. 6. prop. 44. So that where the force in its recefs from the centre decreafes creafes in a greater than a triplicate ratio of the altitude, the body at its parting from the apfis, will either defcend to the centre or afcend in infinitum, according as it defcends or afcends at the beginning of its motion. But if the force in its recefs from the centre either decreafes in a lefs than a triplicate ratio of the altitude, or increafes in any ratio of the altitude whatfoever; the body will never defcend to the centre, but will at fome time arrive at the lower apfis; and on the contrary, if the body alternately afcending and defcending from one apfis to another never comes to the centre, then either the force increafes in the recefs from the centre, or it decreafes in a lefs than a triplicate ratio of the altitude; and the fooner the body returns from one apfis to another, the farther is the ratio of the forces from the triplicate ratio. As if the body fhould return to and from the upper apfis by an alternate defcent and afcent in 8 revolutions, or in 4 , or 2 , or $1 \frac{1}{2}$; that is if m fhould be to n as 8 or 4 or 2 or $1 \frac{1}{2}$ to 1 , and therefore $\frac{n n}{m m}-3$ be $\frac{1}{64}-3$, or $\frac{1}{16}-3$, or $\frac{1}{4}-3$, or $\frac{4}{9}-3$; then the force will be as $A_{54}^{\frac{1}{4}}-3$, or $\mathrm{A}_{1^{\frac{1}{<}}}$ - 3, or $\mathrm{A}_{4}^{4^{-3}}$, or $\mathrm{A}_{\frac{4}{9}}{ }^{3}$; that is, it will be reciprocally as $A^{3}-\frac{1}{6}$, or $A^{3}-\frac{1}{1}$, or $A^{3}-\frac{1}{4}$, or $\mathrm{A}^{3}-\frac{4}{9}$. If the body after each revolution returns to the fame apfis, and the apfis remains unmoved, then m will be to n as 1 to 1 , and therefore $A \frac{n n}{m m}-^{3}$ will be equal to A^{-2} or $\frac{1}{A A}$; and therefore the decreafe of the forces will be in a duplicate ratio of the altitude; as was demonfrated above. If the body in three fourth parts,

SEct. IX. of Natural Pbilofophy. 193 or two thirds, or one third, or one fourth part of an entire revolution, return to the fame apfis; m will be to n as $\frac{1}{+}$ or $\frac{2}{3}$ or $\frac{1}{3}$ or $\frac{1}{4}$ to x , and therefore $A \frac{\pi}{m m}-3$ is equal to $A^{\frac{16}{9}-3}$ or $A^{\frac{2}{4}-3}$, or \mathbf{A}^{9-3}, or \mathbf{A}^{16-3}; and therefore the force is either reciprocally as $A^{\frac{14}{9}}$ or $A^{\frac{1}{4}}$ or direetly, as \mathbf{A}^{6} or A^{13}. Laftly, if the body in its progrefs from the upper apfis to the fame upper apfis again, goes over one entire revolution and three deg. more, and therefore that aplis in each revolution of the body moves three deg. in confequentia; then m will be to n as $3 \sigma_{3}$ deg. to 360 deg. or as 121 to 120 , and therefore $A^{\frac{n \pi}{m}}-3$ will be equal to A - ${ }^{\frac{2}{2}+\frac{2}{2}+\frac{3}{3} \text {, }}$ and therefore the centripetal force will
 $\mathbb{A}^{2{ }^{2} \frac{ \pm}{2+3}}$ very nearly. Therefore the centriptal force decreafes in a ratio fomething greater than the duplicate; but approaching $59+$ times nearer to the duplicate than the triplicate.

Cor. 2. Hence allo if a body, urged by a centripetal force which is reciprocally as the fquare of the alcitude, revolves in an ellipfis whofe focus is in the centre of the forces; and a new and foreign force flould be added to or fubduđted from this centripetal force; the motion of the apfides arifing from that foreign force may (by the third examples) be known; and fo on the contrary. As if the force with which the body retolves in the ellipfis be as $\frac{1}{A A}$; and the foreign

0
force

194 Matiomatical Principles Book I.
forec fubducted as $c \mathrm{~A}$, and therefore the remaining force as $\frac{A-c A^{4}}{A^{3}}$; then (by the third exam.) b will be equal to I, m equal to x , and n equal to 4; and therefore the angle of revolution between the apfides is equal to $180 \sqrt{ } \frac{1-c}{1-4 c}$ deg. Suppofe that foreign force to be 357.45 parts lefs than the other force with which the body revolves in the ellipfis; that is c to be $\frac{3}{j<\frac{10}{7}+\frac{9}{4},} \mathrm{~A}$ or T being equal to 1 ; and then $180 \sqrt{\frac{1-6}{1-46}}$ will be $180 \sqrt{\frac{3}{3} \frac{6645}{3} \frac{4}{3}}$ or 180.7623 , that is, 180 deg. 45 min .44 fec . Therefore the body parting from the upper apfis, will arrive at the lower apfis with an angular motion of 180 deg. 45 min .44 fec. and this angular motion being repeared will return to the upper apfis; and therefore the upper apfis in each revolution will go forward I deg. 3 Im .28 fec . The apfis of the Moon is about twice as fwift.

So much for the motion of bodies in orbits whofe planes pars through the centre of force. It now remains to determine thofe motions in eccentrical planes. For thofe authors who treat of the motion of heavy bodies ufe to confider the afcent and defecnt of fuch bodies, not only in a perpendicular direstion, but at all degrees of obliquiry upon any given planes; and for the fame reafon we are to confider in this place the motions of bodies tending to centres by means of any forces whatfoever, when thofe bodies move in eccentrical planes. There planes are fuppofed to be perfeetly Imoorh and polifhed fo as not to retard the motion of the bodies in the leaft. Moreover in thefe demonftra-

Sect. IX. of Natural Philofophy. 195 tions inftead of the planes upon which thofe bodies roll or flide, and which are therefore tangent planes to the bodies, I fhall ufe planes parallel to them, in which the centres of the bodies move, and by that motion defcribe orbits. And by the fame method I afterwards determine the motions of bodies performed in curve fuperficies.

O_{2}
SECTION
SECTIONX.

Of the motion of bodies in given fuperficies, and of the reciprocal motion of funependulous bodies.

Proposition XLVI. Problem XXXII.

Any kind of centripetal force being \int_{u} ppofed, and the centre of force, and any flane what foever in webich the body revolves, being given, and the quadratures of curvilinear figures leing allozeed; it is required to determine the motion of a body going off from a given place, zeith a given velocity, in the direction of a given right line in that plane.

Let S (Pl. 18. Fig. 4.) be the centre of force, $S C$ the leaft diffance of that centre from the given
plane,

Scct. X. of Natural Philofophy. • 197 plane, P a body iffuing from the place P in the diretion of the right line $P Z, O$ the fame body revolving in its trajectory, and $P Q R$ the trajeqory it felf which is required to be found, defcribed in that given plane. Join $C Q, Q S$, and if in $Q S$ we take $S V$ proportional to the cencripetal force with which the body is attrated towards the centre S, and draw $V T$ parallel to $C O$, and meeting $S C$ in T: then will the force $S V$ be refolved into two, (by cor. 2. of the laws of motion) the force $S T$, and the force $T V$; of which $S T$ attrating the body in the direetion of a line perpendicular to that plane, does not at all change its motion in that plane. But the attion of the other force $T V$, coinciding with the poffition of the plane it felf, attrats the body directly towards the given point C in that plane; and therefore caures the body to move in this plane in the fame manner as if the force $S T$ were taken away, and the body were to revolve in free fpace about the centre C by means of the force $T V$ alone. But there being given the centripetal force $T V$ with which the body Q revolves in free face about the given centre (; there is given (by prop. 42.) the trajeCtory $P Q R$ which the body defcribes; the place Q, in which the body will be found at any given time; and laftly, the velocity of the body in that place Q. And fo i comra. Q.E.I.

$$
\mathrm{O}_{3} \quad \text { Pro: }
$$

Proposition XLVII. Theorem XV.

Supposing the centripetal force to be profortional to the diftance of the body from the centre; all bodies revolving in any planes whatSoever weill deScribe elliffes, and compleat their revolutions in equal times; and thole which move in right lines, running backwards and forreards alternately, will compleat their Several periods of going and returning. in the fame times.

For letting all things flans as in the foregoing propofition, the force $S V$, with which the body Q revolving in any plane $P Q R$ is attracted to wards the centre S, is as the diftance $S O$; and therefore because $S V$ and $S Q, T V$ and $C Q$ arc proportional, the force $T V$ with which the body is attracted towards the given point C in the plane of the orbit is as the diftance $C O$. Therefore the forces with which bodies found in the plane $P Q R$ are attracted towards the point C, are in proportion to the diffances equal to the forces with which the fame bodies are attracted every way towards the centre S; and therefore the bodies will move in the fame times, and in the fame figures in any plane $P Q R$ about the point C, as they would do in free faces about the centre S; and therefore (by cor. 2. prop. 10. and cor. 2.

Plate XVIII.Iot.I.P.ıgs.

Sect. X. of Natural Philosophy. 199 prop. 3 8) they will in equal times either deferibe ellipses in that plane about the centre C, or move to and fro in right lines palfing through the cenare C in that plane; compleating the fame periods of time in all cafes. Q.E.D.

Scholium.

The ascent and deferent of bodies in curve luperficies has a near relation to there motions we have been freaking of. Imagine curve lines to be defcribed on any plane, and to revolve about any given axes palling through the centre of force, and by that revolution to defcribe curve furperficies; and that the bodies move in fuch fort that their centres may be always found in thole fuperficies. If thole bodies reciprocate to and fro with an oblique afeent and defcent; their motions will be performed in planes palling through the axis, and therefore in the curve lines by whole revolution thole curve fuperficies were generated. In thole cafes therefore it will be fufficient to confider the motion in thole curve lines.

Proposition XLVIII. Theorem XVI.

If a wheel ftands upon the outside of a globe at right angles thereto, and revolving about its owen axis goes forward in a great circle; the length of the curvilinear path wobich any point, given in the perimeter of the zeheel,

$$
\mathrm{O}_{4} \quad \text { bath }
$$

200 Mathematical Primciples Book I. bath defcribed fince the time thot it touched the globe, (which curvilipear path we may call the cycloid or e+icycloid) will be to deulle the verfed fine of balf the arc webich fince that time bas touched the gloke in pofing over it, as the fum of the diameters of the gloke and the zwheel, to the Semidiameter of the globe.

Proposition XLIX. Theorem XVII.

If a sebeel fand upon the infide of a concave globe at right angles thereto, and revolving about its o:en axis go forward in one of the great circles of the globe, the length of the curvilinear fath webich any point, given in the perimeter of the reheel, bath defcribed fince it touched the elabe, weill be to the doulle of the verfed fine of half the arc which in all that time has touched the glote in pafling over it, as the difference of the diameters of the glole and the zebeel, to the femidiameter of the gloke.

Let $A B L$ (PL. 19. Fig. 1. 2.) be the globe, C its centre, $B P V$ the wheel infifting thereon, E the centre of the wheel, B the point of contact, and P the given point in the perimeter of the wheel.

Sect. X. of Natural 'Pbilofophy, 201 wheel. Imagine this wheel to proceed in the great circle $A B L$ from A through B towards L, and in its progrefs to revolve in fuch a manner that the arcs $A B, P B$ may be always cqual the one to the other, and the given point P in the perimeter of the wheel may defribe in the mean time the curvilinear path $A P$. Let $A P$ be the whole curvilinear path defcribed fince the wheel touched the globe in A, and the length of this path $A P$ will be to twice the verfed fine of the $\operatorname{arc} \frac{1_{2}^{2}}{}{ }^{-} P$, as $2 C E$ to $C B$. For let the right line $C E$ (produced if need be) meet the whet in V, and join $C P, B P, E P, V P$; produce $C P$, and let fall thereon the perpendicular $V F$. Let $P H, V H$, meting in H, touch the circle in P and V, and let $P H$ cut $V F$ in G, and to $V P$ let fall the perpendiculars $G I, H K$. From the cencre C withany interval let there be defribed the circle nom, cutting the right line $C F$ in n, the perimeter of the whecl $B P$ in 0 , and the curvilinear path $A P$ in m; and from the centre V with the interval V_{0} let there be defrribed a circle cutting $V P$ produced in q.
Becaufe the wheel in its progrefs always revolves about the point of contaet F, it is manifeft that the right line $B P$ is perpendicular to that curve line $A P$ which the point P of the wheel defcribes, and therefore that the right line V^{P} will touch this curve in the point P. Let the radius of the circle nom be gradually increafed or diminifhed fo that at laft it become equal to the diftance $C P$; and by reafon of the fimilitude of the evanefcent figure P nomg, and the figure $P F G V I$, the ultimate ratio of the evanefcent lineolx $P m, P n, F$ o, $P q$, that is, the ratio of the momentary murations

202 Mathematical Principles Book I. of the curve $A P$, the right line $C P$, the circular arc $B P$, and the right line $V P$, will be the fame as of the lines $P V, P F, P G, P I$, refpectively. But fince $V F$ is perpendicular to $C F$, and $V H$ to $C V$. and therefore the angles $H V G, V C F$ equal; and the angle $V H G$ (becaufe the angles of the quadrilateral figure $H V E P$ are right in V and F) is equal to the angle $C E P$, the triangles $V H G, C E P$ will be fimilarf; and thence it will come to pars that as $E P$ is to $C E$ fo is $H G$ to $H V$ or $H P$, and fo $K I$ to $K P$, and by compofition or divifion as $C B$ to $C E$ fo is $P I$ to $P K$, and doubling the confequents as $C B$ to $2 C E$ fo $P I$ to $P V$, and fo is $p q$ to $P m$. Therefore the decrement of the line $V P$, that is the increment of the line $B V-V P$ to the increment of the curve line $A P$ is in a given ratio of $C B$ to $2 C E$, and therefore (by cor. lem. 4.) the lengths $B V-V P$ and $A P$ generated by thofe increments, are in the fame ratio. But if $B V$ be radius, $V P$ is the cofine of the angle $B V P$ or $\frac{1}{2} B E T$, and therefore $B V-V P$ is the verfed fine of the fame angle; and therefore in this wheel whofe radius is $\frac{1}{2} B V, B V-V P$ will be double the verfed fine of the arc $\frac{1}{\tau} B P$. Therefore $A P$ is to double the verfed fine of the arc $\frac{1}{2} B P$ as $2 C E$ to $C B . Q . E . D$.

The line $A P$ in the former of thefe propofitions we fhall name the cycloid without the globe, the other in the latter propofition the cycloid within the globe, for diftinction fake.
Cor. i. Hence if there be defribed the entire cycloid $A S L$ and the fame be bifected in S, the length of the part $P S$ will be to the length $P V$. (which is the double of the fine of the angle

Sect. X. of Natural Pbiloforbr. 203
$V B \Gamma$, when $E B$ is radius) as $2 C E$ to $C B$, and therefore in a given ratio.

Cor. 2. And the length of the femi-perimeter of the cycloid $A S$ will be equal to a right line which is to the diameter of the wheel $B V$ as ${ }_{2} C E$ to $C B$.

Proposition L. Problem XXXiIf.

To caufe a pendulous lody to ofilllate in a given cycibid.

Let there be given within the globe $\subset V S$, (Pl. 19. Fig. 3.) defcribed with the centre C, the cycloid $Q R S$, bifected in R, and meeting the fuperficies of the glove with its extreme points Q and S on either hand. Let there be drawn $C R$ bifecting the arc $Q S$ in O, and let it be produced to A in fuch fort that $C A$ may be to $C O$ as $C O$ to $C R$. About the centre C, with the interval $C A$, let there be defcribed an exterior globe $D A F$, and within this globe; by a whee whofe diameter is $A O$, let there be defcribed two femi-cycloids $A Q, A S$, rouching the interior globe in Q and S, and meeting the exterior globe in A. From that point A, with a thread $A P T$ in length equal to the line $A R$, let the body T depend, and ofcillate in fuch manner between the two femi-cycloids, $A Q, A S$ that as often as the pendulum parts from the perpendicular $A R$, the upper part of the thread $A P$ may be applied to that femi-cycloid $A P S$ towards which the motion tends, and fold it felf round that curve line, as if it were fome folid obftacle,
ftacle; the remaining part of the fame thresd PT which has not yet touched the femi-cycloid continuing ftraight. Then will the weight T ofcillate in the given cycloid QRS. Q. E.F.

For let the thread $P T$ meet the cycloid $Q R S$ in T, and the circle $Q O S$ in V, and let $C V$ be drawn; and to the rectilinear part of the thread $P T$ from the extreme points P and T let there be e retted the perpendiculars $B P, T W$, meeting the right line $C V$ in B and W. It is evident from the conftrution and generation of the fimilar figures $A S, S R$, that thofe perpendiculars $P B, T W$, cut off from $C V$ the lengths $V P, V W$ equal to the diameters of the wheels $O A, O R$. Therefore $T P$ is to $V P$ (which is double the fine of the angle $V B P$ when $\frac{1}{2} B V$ is radius) as $B W$ to $B V_{0}$, or $A Q+O R$ to $A O$, that is (fince $C A$ and $C O, C O$ and $C R$, and by divifion $A O$ and $O R$ are proportional) as $C_{A}+C_{O}$ to C_{A}; or, if $B V$ be bifeted in E, as $2 C E$ to $C B$. Therefore (by cor. 1. prop. 49) the length of the rectilinear part of the thread $P T$ is always equal to the are of the cycloid $P S$, and the whole thread $A P T$ is always equal to the half of the cycloid $A P S$, that is (by cor. 2. prop. 49.) to the length $A R$. And therefore contrarywife, if the ftring remain always equal to the length $A R$ the point T will always move in the given cyeloid QKS. Q.E.D.
Ccr. The ftring $A R$ is equal to the femi-cycloid $A S$, and therefore has the fame ratio to $A C$ the femi-diameter of the exterior globe as the like femi-cycloid $S R$ has to $C O$ the femi-diameter of the interior globe.

Pra-

Sect. X. of Natural Pbilofophy. 20.5

Proposition LI. Theorem XVIII.

If a centripetal force tending on all fides to the centre C of a globe (Pl. 19. Fig. 4.) le in all flaces as the distance of the place from the centre, and by this force alone acting upon it, the body T ofcillate (in the manner above defcrilea) in the perimeter of the cycloid QRS; I fay, that all the of illations how unequal forever in themeSelves will be performed in equal times.

For upon the tangent $T W$ infinitely produced let fall the perpendicular $C X$ and join $C T$. Because the centripetal force with which the body T is inpelled towards C is as the diffance $C T$, let this (by cor. 2. of the laws) be refolved into the parts $C X, T X$ of which $C X$ impelling the body directly from P fetches the thread $P T$, and by the refiftance the thread makes to it is totally employed, producing no other effect; but the other part $T X$, impelling the body cranfverefly or towards X, direally accelerates the motion in the cycloid. Then it is plain that the acceleration of the body, proportional to this accelerating force, will be every moment as the length $T X$, that is, (because $C V$, $W V$, and $\tau X, T W$ proportional to them are given) as the length $T W$, that is (by cor. I. prop. 49.) as the length of the are of the cycloid T. If
there-

20\% Mathematical Princifles Book I.

therefore two pendulums $A P T$, Apt be unequally drawn afide from the perpendicular $A R$, and let fall together, their accelerations will be always as the arcs to be defcribed $T R, t R$. But the parts defcribed at the beginning of the motion are as the accelerations, that is, as the wholes that are to be defcribed at the beginning, and therefore the parts which remain to be defribed and the fubfequent accelerations proportional to thofe parts, are alfo as the wholes, and fo on. Therefore the accelerations, and confequently the velocities generated, and the parts defcribed with thofe velocities, and the parts to be defcribed, are always as the wholes; and therefore the parts to be deferibed preferving a given ratio to each other will vanigh together, that is, the two bodies ofcillating will arrive together at the perpendicular $A R$. And fince on the other hand the afcent of the pendulums from the loweft place R through the fame cycloidal arcs with a retrograde motion, is retarded in the feveral places they pals through by the fame forces by which their defcent was accelerated, 'cis plain that the velocities of their afcent and defcent through the fame arcs are equal, and confequently performed in equal times; and therefore fince the two parts of the cycloid $R S$ and $R Q$ lying on either fide of the perpendicular are fimilar and equal, the two pendulums will perform as well the wholes as the halves of their offillations in the fame times. Q.E.D.

Cor. The force with which the body T is accelerated or retarded in any place \boldsymbol{T} of the cycloid, is to the whole weight of the fame body in the highen place S or Q, as the arc of the cycloid $T R$ is to the arc $S R$ or $Q R$.

Plate XIX.Iol.I. P. zo6.

-

亚

SECT. X. of Natural Pbiloforby. 207

Proposition LII. Problem XXXIV.
To define the velocities of the peniulums in the fiveral places, and the times in which both the entire of cillations, and the feveral parts of them are performed.

About any centre G (Pl. 20. Fig. 1.) with the interval $G H$ equal to the arc of the cycloid $R S$, defcribe a femi-circle $H K M$ bifected by the femidiameter $\boldsymbol{G} K$. And if a centripetal force proportional to the diftance of the places from the centre tend to the centre G, and it be in the perimeter HIK equal to the centripetal force in the perimeter of the globe QOS tending towards' its centre, and at the fame time that the pendulum T is let fall from the higheft place \mathcal{S}, a body as L is let fall from H, to G; then becaufe the forces which act upon the bodies are equal at the beginning, and always proportional to the fpaces to be defcribed $T R$, $L G$, and therefore if $T R$ and $L G$ are equal, are alfo equal in the places T and L, it is plain that thofe bodies defrribe at the beginning equal faces $S T, H L$, and therefore are fill acted upon equally, and continue to defrribe equal fpaces. Therefore by prop. 38. the time in which the body defrribes the arc $S T$ is to the time of one ofillation, as the arc $H I$ the time in which the body

208 Mathematical Principles Book I.

 body H arrives at L, to the femi-periphery $H K M$, the time in which the body H will come to M. And the velocity of the pendulous body in the place T is to its velocity in the loweft place R, that is, the velocity of the body H in the place L to its velocity in the place G, or the momentary increment of the line $H L$ to the momentary increment of the line $H G$, (the arcs $H I, H K$ increafing with an equable flux) as the ordinate $L I$ to the radius $G K$, or as $\sqrt{S R^{2}-T R^{2}}$ to $S R$. Hence fince in unequal ofcillations there are defribed in equal times arcs proportional to the entire arcs of the ofcillations; there are obtained from the times given, both the velocitics and the atcs defribed in all the ofcillations univerfally. Which was firft required.Let now any pendulous bodies ofcillate in differcnt cycloids defcribed within different giobes, whofe abfolute forces are alfo different; and if the abfolute force of any globe QOS be called V , the accelerative force with which the pendulum is acted on in the circumference of this globe, when it begins to move directly towards its centre, will be as the diftance of the pendulous body from that centre and the abfolute force of the globe conjunCtly, that is, as $C O \times \mathrm{V}$. Therefore the lineola $H \boldsymbol{T}$ which is as this accelerative force $\mathrm{CO} \times \mathrm{V}$ will be defcribed in a given time; and if there be erected the perpendicular $r Z$ meeting the circumference in Z, the nafcent arc $H Z$ will denote that given time. Bur that nafcent arc $H Z$ is in the fubduplicate ratio of the rectangle $G H Y$, and therefore as $\sqrt{G H \times C O \times V}$. Whence the time of an entire ofcillation in the cycloid $Q R S$ (it being

Sect. X. of Natural Philofophy. 209
as the femi-periphery $H K M$ which denotes that entire of cillation, directly; and as the arc HZ which in like manner denotes a given time inverfely) will be as $G H$ direetly and $\sqrt{G H \times C O \times V}$ inverfely, that is, becaufe $G H$ and $S R$ are equal, as $\sqrt{ } \frac{S R}{C O \times \mathrm{V}}$, or (by cor. prop. so.) as $\frac{A R}{A C \times V}$. Therefore the ofcillations in all globes and cycloids, performed with what abfolute forces foever, are in a ratio compounded of the fubduplicate ratio of the length of the ftring directly, and the fubduplicate ratio of the diftance between the point of fufpenfion and the cencre of the globe inverfely, and the fubduplicate ratio of the abfolute force of the globe inverfly alfo. Q. E. I.

Cor. i. Hence alfo the times of ofrillating, falling, and revolving bodies may be compared among themelves. For if the diameter of the wheel with which the cycloid is defribed within the globe is fuppofed equal to the femi-diameter of the globe, the cycloid will become a right line palfing through the centre of the globe, and the ofcillation will be changed into a defcent and fubfequent afcent in that right line. Whence there is given both the time of the defcent from any place to the centre, and the time equal to it in which the body revolving uniformly about the centre of the globe at any diftance defcribes an arc of a quadrant. For this time (by care 2.) is to the time of half the ofcillation in any cycloid $O R S$ as I to $\sqrt{\frac{A R}{A C}}$.
Con. 2. Hence alfo follow what Sir Chrifopher Wren and M. Haygens have difcovered concerning P the

210 Mathematical Principles Book 1. the vulgar cy cloid. For if the diameter of the globe be infinitely increafed, its fphrrical fuperficies will be changed into a plane, and the centripetal force will act uniformly in the direction of lines perpendicular to that plane, and this cycloid of ours will become the fame with the common cycloid. But in that cafe the length of the arc of the cycloid between that plane and the defcribing point, will become equal to four times the verfed fine of half the arc of the wheel between the fame plane and the defcribing point as was difcovered by Sir Chriftopher Wren. And a pendulum between two fuch cycloids will ofcillate in a fimilar and equal cycloid in equal times as M. Huygens demonftrated. The defcent of heavy bodies alfo in the time of one ofcillation will be the fame as M. Huggens exhibited.

The propofitions here demonftrated are adapted to the true conftitution of the Earth, in fo far as wheels moving in any of its great circles will defcribe by the motions of nails fixed in their perimeters, cycloids without the globe; and pendulums in mines and deep caverns of the Earth muft ofcillate in cycloids within the globe, that thofe ofcillations may be performed in equal times. For gravity (as will be fhewa in the third book) decreafes in its progrefs from the fuperficies of the Earth; upwards in a duplicate ratio of the diftances from the centre of the earth; downwards in a fimple ratio of the fame.

Sect. X. of Natural Pbilofophy. 211

Proposition LIII. Problem XXXV.
Granting the quadratures of curvilinear figures, it is required to find the forces with which bodies moving in given curve lines may always perform their of cillations in equal times.

Let the body T (Pl. 20. Fig. 2.) of ciliate in mn y curve line $S T R Q$, whore axis is $A R$ palling through the centre of force C. Draw $T X$ touching that curve in any place of the body T, and in that tangent $T X$ take $T Y$ equal to the arc $T R$. The length of that arc is known from the common methods used for the quadratures of figures. From the point r draw the right line $r Z$ perpendicular to the tangent. Draw $C T$ meeting that perpendicular in Z, and the centripetal force will be proportional to the right line TZ. Q. E. I.

For if the force with which the body is at-: traced from T towards C be expreffed by the right line $T Z$ taken proportional to it, that force will be tefolved into two forces $T Y, Y Z$, of which $r Z$ drawing the body in the direction of the length of the thread $P T$, does not at all change iss motion; whereas the other force $T Y$ directly accelerates or retards its motion in the curve $S T R Q$. WhereFore fence that force is as the face to be deferibed $T R$, the accelerations or retardation of the body in defribing two proportional parts (a greater and a P_{2}
less)
lefs) of two ofcillations, will be always as thofe parts, and therefore will caufe thofe parts to be defcribed together. But bodies which continually defrribe together parts proportional to the wholes, will defcribe the wholes together alfo. Q.E.D.

Cor. 1. Hence if the body T (Pl. 2c. Fig. 3.) hanging by a rettilinear thread $A T$ from the centre A, defcribe the circular arc $S T R Q$, and in the mean time be acted on by any force tending downwards with parallel directions, which is to the uniform force of gravity as the arc $T R$ to its fine $T N$, the times of the feveral ofcillations will be equal. For becaufe $T Z, A R$ are parallel, the triangles $A T N, Z T Y$ are fimilar; and therefore $T Z$ will be to $A T$ as $T T$ to $T N$; that is, if the uniform force of gravity be expreffed by the given length $A T$ the force $T Z$ by which the ofcillations become ifochronous, will be to the force of gravity $A T$, as the $\operatorname{arc} T R$ equal to $T Y$ is to $T N$ the fine of that arc.

Cor. 2. And therefore in clocks, if forces were impreffed by fome machine upon the pendulum which preferves the motion, and fo compounded with the force of gravity, that the whole force tending downwards fhould be always as a line produced by applying the rectangle under the arc $T R$ and the radius $A R$ to the fine $T N$, all the ofcillations will become ifochronous.

Proposition LIV. Problem XXXVI.
Granting the quadratures of curvilinear figures, it is required to find the times, in wobich bodies by means of any cestripetal force reill defcend or afcend in any curve lines defcribed in a plane pajfing through the centre of force.

Let the body defcend from any place S (P l. 20. Fig. 4.) and move in any curve STt R given in a plane paffing through the centre of force C. Join $C S$, and let it be divided into innumerable equal parts, and let Dd be one of thofe parts. From the centre C, with the intervals $C D, C d$, let the circles $D T$, $d t$ be deffribed, meeting the curve line $S T t R$ in T and t. And becaufe the law of centriperal force is given, and alfo the altitude $C S$ from which the body at firft fell; there will be given the velocity of the body in any other altitude $C T$ (by prop. 39.) But the time in which the body defribes the lineola T_{t} is as the length of that lineola, that is, as the fecant of the angle tTC direetly, and the velocity inverfely. Let the ordinate $D N$, proportional to this time, be made perpendicular to the right line $C S$ at the point D, and becaufe $D d$ is given, the rectangle $D d \times D N$ that is, the area $D N n d$, will be proportional to the fome time. Therefore if $P N n$ be a curve line in Which the point N is perpetually found, and its
P_{3} afymptote

214 Mathematical Principles Book I. afymptote be the right line $S Q$ fanding upon the line $C S$ at right angles, the area $S Q P N D$ will be proportional to the time in which the body in its defcent hath defrribed the line $S T$; and therefore that area being found the time is alfo given. Q. E. I.

Proposition LV. Theorem XIX.
If a body move in any curve fuferficies whole axis pafjes through the centre of force, and from the lody a perpendicular be let fall upon the axis; and a line parallel and equal thereto be drawn from any given point of the axis; I fay, that this paraliel line ceill defcribe an area proportional to the time.

Let BKL (Pl. 20. Fig. 5.) be a curve fuperficies, T a body revolving in it, $S T R$ a trajectory which the body defcribes in the fame, S the beginning of the trajectory, $O M K$ the axis of the curve fuperficies, $T N_{2}$ a right line let fall perpendicularly from the body to the axis; OP a line parallel and equal thereto drawn from the given point O in the axis; AP the orthographic projection of the trajectory defribed by the point P in the plane $10 P$ in which the revolving line $O P$ is found; A the beginning of that projection anfwering to the point $S ; T C$ a right line drawn from the body to the centre; $T G$ a part thereof

Sect. X. of Natural P.jilorophy. 215 thereof proportional to the centripetal force with which the body tends towards the centre $C ; T M$ a right line perpendicular to the curve fuperficies; TI a part thereof proportioral to the force of preffure with which the body urges the fuperficies, and therefore with which it is again repelled by the fuperficies towards M; ITF a right line parallel to the axis and pafling through the body, and $G F, I H$ right lines let fall perpendicularly from the points G and I upon that parallel $P H T F$. I fay now that the area $A O P$, deferibed by the radius $O P$ from the beginning of the motion, is proportional to the time. For the force $T G$ (by cor. 2. of the laws of motion) is refolved into the forces $T F, F G$; and the force $T I$ into the forces $T H, H I$; but the forces $T F$, $T H$, ating in the direttion of the line $P F$ perpendicular to the plane $1 O P$, introduce no change in the motion of the body but in a direction perpendicular to that plane. Therefore its motion fo far as it has the fame direction with the pofrition of the plane, that is, the motion of the point P, by which the projection $A P$ of the trajetory is deferibed in that plane, is the fame as if the forces $T F, T H$ were taken away, and the body were acted on by the forces $F G, H I$ alone; that is, the fame as if the body were to defcribe in the plane $A O P$ the curve $A P$ by means of a centripetal force tending to the centre O, and equal to the fum of the forces $F G$ and HI. But with fuch a force as that (by prop. 1.) the area $A O P$ will be defrribed proportional to the time. Q.E.D.

Cor. By the fame reafoning if a body, acted on by forces tending to two or more centres in P_{4} any

216 Mathematical Principles Book I. any the fame right line CO, fhould defrribe in 2 free fpace any curve line $S T$; the area $A O P$ would be always proportional to the time.

Proposition LVI. Problem XXXVII.

Granting the quadratures of curvilinear figures and fuppofing that there are given both the laze of centripetal force tending to a given centre, and the curve fuperficies whofe axis pafjes through that centre; it is required to find the trajectory webich a lody will defcribe in that fuperficies, when going off from a given place weith a given velocity, and in a given direction in that fuperficies.

The laft confruction remaining, let the body T go from the given place S (Pl. 20. Fig. 6.) in the direction of a line given by pofition, and turn into the trajectory fought $S T R$ whofe orthographic projection in the plane BLO is AP. And from the given velocity of the body in the altitude $S C$, its velocity in any other altitude $T C$ will be alfo given. With that velocity in a given moment of time let the body defcribe the particle T_{t} of its trajectory, and let $P P$ be the projection of that particle defcribed in the plane $A O P$. Join O_{p}, and a little circle being defcribed upon the curve fuperficies about the centre T with the interval $T t$, let the projection of that little circle in the plane $A O P$

Sect. X. of Natural Pbilofophy. 217 $A O P$ be the ellipfis $p Q$. And becaule the magnitude of that little circle $T t$, and $T N$ or $P O$ its diftance from the axis $C O$ is alfo given, the ellipfis $p Q$ will be given both in kind and magnitude, as alfo its pofition to the right line PO. And fince the area $P O p$ is proportional to the time, and therefore given becaufe the time is given the angle $P O_{p}$ will, be given. And thence will be given p the common interfection of the ellipfis and the right line O_{p}, together with the angle $O P$ p in which the projection $A P P$ of the trajectory cuts the line $O P$. But from thence (by conferring prop. 41 . with its $2 d$ cor.) the manner of determining the curve $A P p$ eafily appears. Then from the feveral points P of that projection erecting to the plane $A O P$ the perpendiculars $\boldsymbol{P T}$ meeting the curve fuperficies in T, there will be given the feveral points T of the trajectory. Q.E.I.

SECTE

Section XI.

Of the motions of bodies tending to each other with centripetal forces.

I have hitherto been treating of the attrations of bodies towards an immoveable centre; tho' very probably there is no fuch thing exiftent in nature. For attractions are made towards bodies; and the attions of the bodies attrated and attracting, are always reciprocal and equal by law 3 . fo that if there are two bodies, neither the attratted nor the attracting body is truly at reft, but both (by cor. 4. of the laws of motion) being as it were mutually attratted, revolve about a common centre of gravity. And if there be more bodies, which are either attrated by one fingle one which is attraAed by them again, or which, all of them, attract each other mutually; thefe bodies will be fo moved among themfelves, as that their common centre of gravity will either be at reft, or move uniformly forward in a right line. I fhall therefore at prefent go on to turat of the motion of bodies mutually attratting each other; confidering the centripetal forces as attractions; though perhaps in a phyfical friennefs they may more truly be called impulifes.

Sect. XI. of Natural Pbilofophy, 2 ., impulfes. But thefe propofitions are to be cons fidered as purely mathematical; and therefore laying afide all phyfical confiderations, I make ufe of a familiar way of fpeaking, to make my felf the more eafily underftood by a mathematical reader.

Proposition LVII. Theorem XX.

Two bodies attracting each other mutually, defcribe fimilar figures about their common centre of gravity, and about each other mutually.

For the diftances of the bodies from their common centere of gravity are reciprocally as the bodies; and therefore in a given ratio to each other; and thence by compofition of ratio's, in a given ratio to the whole diftance between the bodies. Now thefe diftances revolve about their common term with an equable angular motion, becaufe lying in the fame right line they never change their inclination to each other mutually. But right lines that are in a given ratio to each other, and revolve about their terms with an equal angular motion, defribe upon planes, which either reft with thofe terms, or move with any motion not angular, figures entirely fimilar round thofe terms. Therefore the figures defrribed by the revolution of thefe diffances are fimilar. Q.E.D.

Proposition LVIII. Theorem XXI.

If two bodies attract each other mutually zeith forces of any kind, and in the mean time revolve alout the common centre of gravity; I fay that by the fame forces there may be defcribed round either body unmoved, a figure fimilar and equal to the figures whicb the kodies fo moving defcribe round each other mutually.

Let the bodies S and P (Pl. 20. Fig. 7.) revolve about their common centre of gravity C, proceeding from S to T, and from P to Q. From the given point s, let there be continually drawn $s p$, sq, equal and parallel to $S P, T Q_{;}$and the curve $p q v$, which the point p defcribes in its revolution round the immoveable point s, will be fimilar and equal to the curves, which the bodies S and P deferibe about each other mutually; and therefore by theor. 20. fimilar to the curves $S T$ and $P Q V$ which the fame bodies defrribe about their common centre of gravity C; and that becaufe the proportions of the lines $S C, C P$, and $S P$ or $s p$, to each other, are given.
CASE I. The common centre of gravity C (by cor. 4. of the laws of motion) is either at reft, or moves uniformly in a right line. Let us firft fuppofe it at reft, and in s and p let there be placed two bodies, one immoveable in s, the other
move-

Sect. XI. of Natural Philofophy. 221
moveable in p, fimilar and equal to the bodies S and P. Then let the right lines $P R$ and $p r$ touch the curves $P Q$ and $p q$ in P and p, and produce $C Q$ and sq to R and r. And becaufe the figures $C P R Q$, sprq are fimilar, $R Q$ will be to $r q$ as $C P$ to $s p$, and therefore in a given ratio. Hence if the force with which the body P is attratted towards the body S, and by confequence towards the intermediate point the centre C, were to the force with which the body p is attracted towards the centre s, in the fame given ratio; thefe forces would in equal times attratt the bodies from the tangents $P R, p r$ to the arcs $P Q, p q$, through the intervals proportional to them $R Q, r q$; and therefore this laft force (tending to s) would make the body p revolve in the curve $p q v$, which would become fimilar to the curve $P Q V$, in which the firft force obliges the body P to revolve; and their revolutions would be compleated in the fame times. But becaufe thofe forces are not to each other in the ratio of $C P$ to $s p$, but (by reafon of the fimilarity and equality of the bodies S and s, P and p, and the equality of the diftances $S P, s p$) mutually equal; the bodies in equal times will be equally drawn from the tangents; and therefore that the body p may be attracted through the greater interval $r q$, there is required a greater time, which will be in the fubduplicate ratio of the intervals; becaufe by lemma 10. the facees defrribed at the very beginning of the motion are in a duplicate ratio of the times. Suppofe then the velocity of the body p to be to the velocity of the body P in a fubduplicate ratio of the diftance $s p$ to the diftance $C P$, fo that the arcs $p q, P Q$, which are in a fimple proportion to each other,

222 Mathematical Principles Book I.

may be defcribed in times that are in a fubduplicate ratio of the diftances; and the bodies P, p, always attracted by equal forces will defcribe round the quiefcent centres C and s fimilar figures $P Q V$, $p q v$, the latter of which $p q v$ is fimilar and equal to the figure which the body P defcribes round the moveable body S. Q. E. D.

Case 2. Suppofe now that the common centre of gravity together with the fpace in which the bodies are moved among themfelves, proceeds uniformly in a right line; and (by cor. 6. of the laws of motion) all the motions in this fpace will be performed in the fame manner as before; and therefore the bodies will deferibe mutually about each other the fame figures as before, which will be therefore fimilar and equal to the figure pqv. Q.E.D.

Cor. 1. Hence two bodies attracting each other with forces proportional to their diftance, deferibe (by prop. 10.) both round their common centre of gravity, and round each other mutually, concentrical ellipfes; and vice versâ if fuch figures are defcribed, the forces are proportional to the diftances.

Cor. 2. And two bodies, whofe forces are reciprocally proportional to the fquare of their diftance, defcribe, (by prop. 11, 12, 13.) both round their common centre of gravity and round each other mutually, conic fections having their focus in the centre about which the figures are defcribed: And vice versâ, if fuch figures are defcribed, the centripetal forces are reciprocally proportional to the fquares of the diftance.

Cor. 3. Any two bodies revolving round their common centre of gravity, defcribe areas proportional to
the

Plate XX.Vot.I.P.2:2.

SECT. XI. of Natural Philofophy. 223
the cimes, by rddij drawn both to that centre and to other mutually.

Proposition LIX. Theorem XXII.
The periodic time of two bodies S and \mathbf{P} revolving round their common centre of gravity \mathbf{C}, is to the periodic time of one of the bodies \mathbf{P} revolving round the other S remaining unnoved, and defcribing a figure fimilar and equal to thofe which the bodies defcribe about each ot her mutually, in a fubduplicate ratio of the other body \mathbf{S} to the fum of the bodies $\mathrm{S}+\mathrm{P}$.

For by the demonftration of the laft propo: fition, the times in which any fimilar arcs $P Q$ and $p q$ are defcribed, are in a fubduplicate ratio of the diftances $C P$ and $S P$ or $s p$, that is in 2 fubduplicate ratio of the body S to the fum of the bodies $S+P$. And by compofition of ratio's; the fums of the times in which all the fimilar arcs $P Q$ and $p q$ are defcribed, that is, the whole times in which the whole fimilar figures are defribed, are in the fame fubduplicate ratio. Q.E.D.

Proposition LX. Theorem XXIII.

If two bodies S and P , attratting each other with forces reciprocally proportional to the fquares of their difance, revolve about their common centre of gravity; 1 Say that the principal axis of the elliffis which either of the bodies as P defcribes by this motion about the other S, weill be to the principal axis of the ellipits, webich the Same body P may defcrite in the fame periodical time alout the other body S quiefcent, as the fum of the tzeo bodits S-1-P to the firft of two mean proportionals between that fum and the other body S .

For if the ellipfes defcribed were equal to each other, their periodic times by the laft theorem would be in a fubduplicate ratio of the body S to the fum of the bodies $S-1-P$. Let the periodic time in the latter ellipfis be diminifhed in that ratio, and the periodic times will become equal; but by prop. 15. the principal axis of the ellipfis, will be diminifhed in a ratio fefquiplicate to the former ratio; that is in a ratio, to which the ratio of S to S_{-1-P} is triplicate; and therefore that axis will be to the principal axis of the other ellipfis, as the firft of two mean proportionals between
$S-1-P$

Sect. XI. of Natural Pbilofophy. 225
$\mathcal{S}+\boldsymbol{P}$ and S to $S+P$. And inverfely the principal axis of the ellipfis defcribed about the moveable body, will be to the principal axis of that defrribed round the immoveable, as $S+P$ to the firft of two mean proportionals between $S+P$ and S. Q. $E . D$.

Proposition LXI. Theorem XXIV.

If two bodies attralting each other with any kind of forces, and not otherwife agitated or obfructed, are moved in any manner whatfoever; thofe motions will be the fame, as if they did not at all attract each other mutually, lut were botb attracted with the fame forces by a third body placed in their common centre of gravity; and the lawe of the attracting forces will be the Same in refpect of the diftance of the bodies from the common centre, as in refpect of the diftance between the treo bodies.

For thore forces with which the bodies attrat each other mutually, by tending to the bodies tend difo to the common centre of gravity lying directly between them; and therefore are the fame as if they proceeded from an intermediate body. Q. E. D.

And

And becaufe there is given the ratio of the diflance of either body from that common cencre to the diftance between the two bodies, there is given of courfe the ratio of any power of one d_{i} flance to the fame power of the other diffance; and alfo the ratio of any quantity derived in any manner from one of the diftances compounded any how with given quantities, to another quancity, derived in like manner from the other diffance, and as many given quantities having that given ratio of the diftances to the firft. Therefore if the force with which one body is attratted by another be directly or inverfely as the diffance of the bodies from each other, or as any power of that diftance ; or laftly as any quantity derived after any manner from that diftance compounded with given quantities; then will the fame force with which the fame body is attracted to the common centre of gravity, be in like manner direetly or inverfely as the diffance of the attrated body from the common centre, or as any power of that difance, or laftly as a quantity derived in like fort from that diffance compounded with analogous given quantities. That is, the law of atrratting force will be the fame with refpect to both difances. Q. E. D.

Proposition LXII. Problem XXXVIII.

To determine the motions of two bodies which attract each other with forces reciprocally proportional to the Jquares of the difiance between them, and are let fall from given places.

The bodies, by the laft cheorem, will be moved in the fame manner as if they were attrated by a third placed in the common centre of their gravity; and by the hypothefis that centre will be quiefcent at the beginning of their motion, and therefore (by cor. 4. of the laws of motion) will be always quiefcent. The motions of the bodies are therefore to be determined (by prob. 25 .) in the fame manner as if they were impelled by forces tending to that centre; and then we fhall have the motions of the bodies attracting each other mutually. Q. E. I.

Proposition LXIII. Problem XXXIX.

To determine the motions of two bodies attractiong each other weith forces recifrocally proportional to the Spuares of their diftance, and going off from given places in given directions; with given velocities.

The motions of the bodies at the beginning being given, there is given alfo the uniform motion

Q 2
of

228 Matbematical Princitles Book I.

of the common centre of gravity, and the motion of the fpace which moves along with this centre uniformly in a right line, and alfo the very firft, or beginning motions of the bodies in respect of this space. Then (by cor. 5. of the laws, and the laft theorem) the fubfequent motions will be performed in the fame manner in that fpace, as if that fpace together with the common centre of gravity were at reft, and as if the bodies did not attrate each other, but were attracted by a third body placed in that centre. The motion therefore in this moveable fpace of each body going off from a given place, in a given direction, with a given velocity, and acted upon by a centripetal force tending to that centre, is to be determined by prob. 9. and 26. and at the fame time will be obtained the motion of the other round the fame centre. With this motion compound the uniform progrefive motion of the entire fyftem of the fpace and the bodies revolving in it, and there will be obtained the abfolute motion of the bodies in immoveable Ipace. Q. E. I.

Proposition LXIV. Problem XL.

Suppofing forces weith webich lodies mur. tually attract each other to increase in a fimple ratio of their ditiances from the centres; it is required to find the motions of Several bodies among thenSelves.

Suppofe the two firft bodies T and L (Pl. 21. Fig. 1.) to have their common centre of gravity

Ssct. XI. of Natural Pbilofopby. 229
in D. Thefe by cor, 1. theor. 21. will defrribe ellipfes having their centres in D, the magnitudes of which ellipfes are known by prob. 5-

Let now a third body S attract the two former T and L with the accelerative forces $S T, S L$, and let it be attracted again by them. The force ST (by cor. 2. of the laws of motion) is refolved into the forces $S D, D T$; and the force $S L$ into the forces $S D$ and $D L$. Now the forces $D T, D L$, which are as their fum $T L$, and therefore as the accelerative forces with which the bodies T and L attract each other mutually, added to the forces of the bodies T and L, the firft to the firft, and the laft to the laft, compofe forces proportional to the diftances $D T$ and $n L$ as before, but only greater than thofe former forces; and therefore (by cor. 1. prop. 10. and cor. 1. and 8. prop. 4.) they will caufe thofe bodies to defcribe ellipfes as before, but with a fwifter motion. The remaining accelerative forces $S D$ and $S D$, by the motive forces, $S D \times T$ and $S D \times L$ which are as the bodies, attracting thofe bodies cqually, and in the direqtion of the lines $T I, L K$ parillel to $D S$, do not at all change their fituations with refpect to one another, but caufe them equally to approach to the line $I K$; which muft be imagined drawn through the middle of the body S, and perpendicular to the line DS. But that approach to the line $I K$ will be hindered by caufing the fyftem of the bodies T and L on one fide, and the body S on the other with proper velocities to revolve round the common centre of gravity C. With fuch a motion the body S, becaule the fum of the motive forces $S D \times T$ and $S D \times L$ is proportional to the diffance $C S$, tends to the ceptre C, Q 3

230 Mathematical Principles Book I.
will defrribe an ellipfis round the fame centre C; and the point D, becaufe the lines $C S$ and $C D$ are proportional, will defrribe a like ellipfis over-againft it. But the bodies T and L, attrated by the motive forces $S D \times T$ and $S D \times L$, the firft by the firft, and the laft by the laft, equally and in the direction of the parallel lines $T I$ and $L K$ as was faid before, will (by cor. 5 . and 6 . of the laws of motion) continue to defcribe their ellipfes round the moveabie centre D as before. Q. E. I.

Let there be added a fourth body V, and by the like reafoning it will be demonftrated that this body and the point C will defreibe ellipes about the common centre of gravity B; the motions of the bodies T, L, and S round the centres D and C remaining the fame as before; but accelerated. And by the fame method one may add yet more bodies at pleafure. Q. E. I.

This would be the cale, though the bodies T and L attrata each other mutually with accelerative forces either greater or lefs than thofe with which they attrat the other bodies in proportion to their diftance. Let all the mutual accelerative attrations be to each other as the diffances multiplyed into the attracting bodies; and from what has gone before it will eafily be 'concluded that all the bodies will defcribe different ellipes with equal periodical times about their common centre of gravity B, in an immoyeable plane. Q. E. I.:

PR \boldsymbol{R}_{-}

Sect. XI. of Natural Plitiofonhy. 231

Proposition LXV. Theorem XXV.

Eodies, whofe forces decreafe in a duplicate ratio of their dificnces from their centres, may move aniong themSelves in elliples; and by radij drazen to the foci may defcrile area's proportional to the times very nearb.

In the laft propofition we demonftrated that care in which the motions will be performed exactly in elliples. The more diftant the law of the forces is from the law in that cafe, the more will the bodies diffurb each others motions; neither is it polfible that bodies attraeting each other mutually according to the law fuppofed in this propofition flould move exattly in ellipfes unlefs by keeping a certain proportion of diftances from each other. However in the following cafes the orbits will not much differ from ellipfes.
CASE I. Imagine feveral leffer bodies to revolve about fome very great one at different diftances from it, and fuppofe abrolure forces tending to every one of the bodies, proportional to each. And becaufe (by cor. 4. of the laws) the common centre of gravity of them all is either at reft or moves uniformly forward in a right line, fuppofe the leffer bodies fo fmall that the great body may be never at a fenfible diffance from that centre; and then the greas body will, without any fenfible Q 4 error

232 Mathematical Principles Book I.

error, be either at reft or move uniformly forward in a right line; and the leffer will revolve about that great one in ellipfes, and by radij drawn thereto will defrribe areas proportional to the times; if we except the errors that may be introduced by the receding of the great body from the common centre of gravity, or by the mutual adtions of the leffer bodies upon each other. But the leffer bodies may be fo far diminifined, as that this recefs and the mutual actions of the bodies on each other may become lefs than any affignable; and therefore fo as that the orbits may become ellipfes, and the areas anfwer to the times, without any error that is not lefs than any affignable. Q. E. O.

Case 2. Let us imagine a fyftem of leffer bodies revolving about a very great one in the manper juft delcribed, or any other fyftem of two bodies revolving about each other to be moving uniformly forward in a right line, and in the mean time to be impelled fide-ways by the force of, another vaflly greater body fituate at a great diffance. And becaure the equal accelerative forces with which the bodies are impelled in parallel diretions do not change the fituation of the bodies with refpect to each other, but only oblige the whole fyftem to change its place while the parts fill retain tleir motions among themfelves; it is manifeft, that no change in thofe motions of the attrated bodies can arife from their attrations towards the greater, unlefs by the inequaliry of the accelerative attractions, or by the inclinations of the lines towards each other, in whofe directions the attractions are made. Suppofe therefore all the accelerative attractions made towards the great body to be among them-

Sec.t. XI. of Natural Pbilofophy. 233
felves as the fquares of the diffances reciprocally; and then, by increafing the diftance of the greas body till the differences of the right lines drawn from that to the others in refpet of their length, and the inclinations of thofe lines to each other, be lefs than any given, the motions of the parts of the fyftem will continue without errors that are not lefs than any given. And becaufe by the fmall diffance of thofe parts from each other, the whole fyltem is attrated as if it were but one body, it will therefore be moved by this attration as if it were one body; that is, its centre of gravity will deffribe about the great body one of the conic fections (that is, a parabola or hyperbola when the attration is but languid, and an ellipfis when it is more vigorous) and by radij drawn thereto it will defcribe area's proportional to the times, withour any errors but thofe which arife from the diftances of the parts, which are by the fuppofition exceeding fmall, and may be diminifhed at pleafure. Q.E. O.

Bya like reafoning one may proceed to more compounded cafes in infinitum.
Cor. I. In the fecond cafe, the nearer the very great body approaches to the fy fem of two or more revolving bodies, the greater will the perturbation be of the motions of the parts of the fyftem among themfelves; becaufe the inclinations of the lines drawn from that great body to thofe parts become greater; and the inequality of the proportion is alfog greater.

Cor. 2. But the perturbation will be greatef of all, if we fuppofe the accelerative attractions of the parts of the fyftem towards the greateft body of all are not to each orher rectiprocally 'as the squarce

234 Mathematical Principles Book I. Squares of the diftances from that great body; especially if the inequality of this proportion be greater than the inequality of the proportion of the diftances from the great body. For if the accelerative force, acting in parallel directions and equally, causes no perturbation in the motions of the parts of the fyftem, it mut of course, when it acts unequally, cause a perturbation fomewhere, which will be greater or lees as the inequality is greater or left. The excels of the greater impulses acting upon rome bodies, and not acting upon others, muff neceffarily change their fituation among themfelves. And this perturbation, added to the perturbation arifing from the inequality and inclination of the lines, makes the whole perturbation greater.

Cor. 3. Hence if the parts of this fyftem move in ellipfes or circles without any remarkable perturbation; it is manifest, that if they are at all impelled by accelerative forces tending to any other bodies, the impulse is very weak, or elf is impreffed very near equally and in parallel directions upon all of them.

Proposition LXVI. Theorem XXVI.

If three bodies areole forces decreafe in a duplicate ratio of the difances, attract each other mutually; and the. accelerative attractions of any two towards the third be between themSelves reciprocally as the Squares of the distances; and the two leafs revalve

Sect. XI. of Natural Pbilofopby. 235 volve about the greateft; I fay that the interior of the two revolving bodies will, by radij drawn to the innermat and greater:', describe round that lo. dy, area's more proportional to the times, and a figure more approaching to that of ans elliffis having its focus in the point of concourse of the radip, if that great body te agitated by thafe attractions, than it would do if that great lady sere not attracked at all by the lefter, but remaine at ref i; or than it world if that great lady were very much more or very much less attracted, or very much more or very much less agitated by the attractions.

This appears plainly enough from the demonftration of the fecond corollary of the foregoing proposition; but it may be made out after this manner by a way of reasoning more diftinta and more universally convincing.

CASE i. Let the lefter bodies P and S (Γ l. 21 , Fig. 2.) revolve in the fame plane about the greaten body T, the body P deffribing the interior orbit $P A B$, and S the exterior orbit ESE. Let $S K$ be the mean diftance of the bodies P and S; and let the accelerative attraction of the body P towards S, at that mean diffance, be expreffed by that line $S K$. Make $S L$ to $S K$ as the fquare of $S K$ to the fquare of $S P$, and $S E$
will

236 . Mathematical Principles Book I. will be the accelerative attration of the body P towards S at any diftance $S P$. Join $F T$, and draw $L M$ parallel to it meeting $S T$ in M; and the attration $S L$ will be refolved (by çor. 2. of the laws of motion) into the attractions SM, LM. And fo the body P will be urged with a threefold accelerative force. One of thefe forces tends towards T, and arifes from the mutual attration of the bodies T and P. By this force alone the body P would defrribe round the body T, by the radius $P T$, areas proportional to the times, and an ellipfis whofe focus is in the centre of the body T; and this it would do whether the body T remained unmoved, or whether it were agiated by that attration. This appars from prop. in. and cor. 2 \& 3 of theor. 21. The other force is that of the attration $L M$, which becaufe it tends from P to T, will be fuper-added to and coincide with the former force; and caufe the area's to be fill proportional to the times, by cor. 3. theor. 21. But becaufe it is not reciprocally proportional to the fquare of the diftance $P T$, it will compofe when added to the former, a force varying from that proportion; which variation will be the greater, by now much the proportion of this force to the former is greater, cateris peribus. Therefore fince by prop. 11. and by cor. 2. theor. 21. the force with which the ellipfis is defribed about the focus T ought to be directed to that focus; and to be reciprocally propirtional to the fquare of the diflance $P T$; that compounded force varying from that proportion will make the orbit $P A B$ vary from the figure of an ellipfis that has its Eocus in the point T; and fo much the more by how much the variation from that proportion is greater; and

Sect. XI. of Natural Philofophy. 237 and by confequence by how much the proportion of the fecond force $L M$ to the firft force is greater, ceteris paribus. But now the third force $S M$, attrating the body P in a direction $p a-$ rillel to $S T$, compofes with the other forces a new force which is no longer directed from P to T; and which varies fo much more from this direction, by how much the proportion of this third force to the other forces is greater cateris paribus; and therefore caufes the body P to defrribe, by the radius $T P$, area's no longer proportional to the times; and therefore makes the variation from that proportionality fo much greater by how much the proportion of this force to the others is greater. But this third force will increafe the variation of the orbit. $P A B$ from the elliptical figure before mentioned upon two accounts; firft becaufe that force is not directed from P to T; and fecondly becaufe it is not reciprocally proportional to the fquare of the diffance $P T$. Thefe things being premifed, it is manifeft, that the area's are then moft nearly proportional to the times, when that third force is the leaft. poffible, the reft preferving their former quantity; and that the orbit $P A B$ does then approach neareft to the elliptical figure above-mentioned, when both the fecond and third, but efpecially the third force, is the leaft poffible; the firf force remaining in its former quantity.
Let the accelerative attraction of the body T towards S be expreffed by the line $S N$; then if the accelerative attractions $S M$ and $S N$ were equal, thefe, attrating the bodies T and P equally and in parallel direदtions, would not at all change their firuation with refpect to each orher. The motions of the bodies between thermelves would be the fame

238 Mathematical Principles Book I.
fame in that care as if thofe attrations did not act ac all. by cor. 6 . of the laws of motion. And by a like reafoning if the attraction $S N$ is kefs than the attration $S M$, it will take away out of the attraction $S M$ the part $S N$, fo that there will remain only the part (of the attraction) $M N$, to difturb the proportionality of the area's and cumes, and the elliptical figure of the orbit. And in like manner if the attraction $S N$ be greater than the attration $S M$, the perturbation of the orbit and proportion will be produced by the difference $\boldsymbol{M N}$ alone. After this manner the attration $S N$ reduces always the attrattion $S M$ to the attration $M N$, the firft and fecond attractions remaining perfectly unchanged; and therefore the area's and times come then neareft to proportionality, and the orbit $P A B$ to the above-mentioned elliptical figure, when the attration $M N$ is either none, or the leaft that is poffible; that is, when the accelerative attrations of the bodies P and T approach as near as pofible to equality ; that is, when the attraction $S N$ is neither none at all, nor lefs than the leaft of all the attrations $S M$, but is as it were a mean between the greateft and leaft of all thofe attractions $S M$, that is, not much greater nor much lefs than the attration $S K . Q . E . D$.
Case. 2. Let now the leffer bodies P, S, revolve about a greater T in different planes; and the force $L M$, acting in the direttion of the line $P T$ fituate in the plane of the orbit $P A B$, will have the fame effect as before; neither will it draw the body P from the plane of its orbit. But the other force $N M$ acting in the diretion of a line parallel to $S T$ (and which therefore wher the body S is without the line of the nodes is inclined

Sect. XI. of Natural Pbilofopby. 239 clined to the plane of the orbit $P A B$) belides the perturbation of the motion juft now fpoken of as to longitude, introduces another perturbation alfo as to latitude, attracting the body P out of the plane of its orbit. And this perturbation, in any given fituation of the bodies P and T to each other, will be as the generating force $M N$; and therefore becomes leaft when the force $M N$ is leaft, that is, (as was juft now thewn) where the attraction $S N$ is not much greater nor much lefs than the attraction SK. O. E. D.

Cor. 1. Hence it may be eafily colletted, that if feveral lefs bodies P, S, R, đ夭c. revolve about a very great body T; the motion of the innermoft revolving body P will be leaft difturbed by the attractions of the others, when the great body is as well attratted and agitated by the reft (according to the ratio of the accelerative forces) as the reft are by each orher mutually.

Cor. 2. In a fyftem of three bodies T, F, S, if the accelerative attractions of any two of them towards a third be to each other reciprocally as the fquares of the diftances; the body P, by the sadius $P T$, will defrribe its area fwifter near the conjunction A and the oppofition B, than it will near the quadratures C and D. For every force with which the body P is aeted on and the body T is not, and which does not att in the direction of the line $P T$, does either accelerate or retard the defcription of the area, according as it is directed, whether in confequentia or in antecedentia. Such is the force $N M$. This force in the paffage of the body P from C to A is directed in confequentia to its motion, and therefore accelerates it; then as far as D in antocedentia, and retards the

240 Mathematical Principles Book I.

 the motion; then in confequentia as far as B; and lafly in antecedentia as it moves from \boldsymbol{B} to C.Cor. 3. And from the fame reafoning it appears that the body P, cateris paribus, moves more fwifly in the conjunetion and oppofition than in the quadratures.
Cor. 4. The orbit of the body P, ceteris paribus, is more curve at the quadratures than at the conjunction and oppofition. For the fwifter bodies move, the lefs they deffect from a retilinear path. And befides the force $K L$, or $N M$, at the conjunction and oppofition, is contrary to the force with which the body T attraeks the body P; and therefore diminifhes that force; but the body \boldsymbol{P} will deffect the lefs from a reetilinear path the lefs it is impelled towards the body T.
Cor. 5. Hence the body P cateris paribus poes farther from the body T at the quadratures than at the conjunation and oppofition. This is faid however, fuppofing no regard had to the motion of eccentricity. For if the orbit of the body P be eccentrical, its eccentricity (as will be fhewn prefently by cor. 9.) will be greateft when the apfides are in the fyzygies; and thence it may fometimes come to pafs that the body P in its near approach to the farther apfis, may go farther from the body T at the fyzygies, than at the quadratures.
Cor. σ. Becaure the centripetal force of the ceneral body T, by which the body P is retained in its orbit, is increafed at the quadratures by the addition caufed by the force $L M$, and diminifhed at the fyzygies by the fubduation caufed by the force $K L$; and by reafon the force $K L$ is greater than

Sect. XI. of Natural Pbilofophy. 241
than $L M$ is more diminifhed than increafed; and moreover fince that centripetal force (by cor. 2 . prop. 4.) is in a ratio compounded of the fimple ratio of the radius TP direCtly, and the duplicate ratio of the periodical time inverfely; it is plain that this compounded ratio is diminifihed by the action of the force $K L$; and therefore that the periodical time, fuppofing the radius of the orbit $P T$ to remain the fame, will be increafed, and that in the fubduplicate of that ratio in which the centripetal force is diminifhed; and therefore fuppofing this radius increafed or diminifhed, the periodical time will be increafed more or diminihhed lefs than in the fefquiplicate ratio of this radius, by cor. 6. prop. 4. If that force of the central body fhould gradually decay, the body P being lefs and lefs attrated would go farther and farther from the centre T; and on the contrary if it were increafed it would draw nearer to it. Therefore if the attion of the diftant body S, by which that force is diminiifhed, were to increafe and decreafe by turns; the radius $T P$ will be alfo increaled and diminifhed by turns; and the periodical time will be increafed and diminifhed in a ratio compounded of the fefquiplicate ratio of the radius, and of the fubduplicate of that ratio in which the centripetal force of the central body \mathbf{T} is diminifhed or increafed, by the increafe or decreafe of the action of the diftant body S.
Cor. 7. It alfo follows from what was before laid down, that the axis of the ellipfis defrribed by the body F, or the line of the apfides, does as to its angular motion go forwards and backwards by turns, but more forwards than backwards, and by the excefs of irs direet motion, is in the whole

2;2 Mrinemitical Pitucifles BookI. carried forwards. For the force with which the body P is urged to the body T at the quadratures, where the forse $M N$ vanifhes, is compounded of the force $L M$ and the centripetal force with which the body T arracts the body F. The fult force $L M$, if the diftance $P T$ be increafed, is increafed in nearly the fame proportion with that diftance, and the other force decreafes in the duplicate ratio of that difance; and therefore the fum of there two forces decreafes in a lefs than the duplicate ratio of the diftance $P T$, and therefore by cor. r . prop. 45. will make the line of the apfides, or, which is the fome thing, the upper aplis, to go backward. But at the conjunction and oppofition the force with which the body P is urged towards the body T, is the difference of the force $K L$, and of the force with which the body T attracts the body P; and that difference, becaule the force $K L$ is very nearly increafed in the ratio of the diftance PT, decreafes in more than the duplicate ratio of the diffance $P T$; and therefore by cor. I. prop. 45. caufes the line of the apfides to go forwards. In the places between the fyzygits and the quadratures, the motion of the line of the apfides depends upon both thefe caufes conjunctiy, to that it either goes forwards or backwards in proportion to the excefs of one of thefe caufes above the other. Therefore fince the force $K L$ in the fyzygies is almoft twice as grear as the force $L M$ in the quadrarures, the excels will be on the fide of the force $K L$, and by confequence the line of the apfides will be carried forwards. The truth of this and the foregoing corollary will be more eafily underftood by conceiving the fyftem of the two bodics T and r, to be furrounded on

Sect. XI. of Natural Pliliosophy. 243 every fide by feveral bodies S, S, S, e̛c. difpofed about the orbit $E S E$. For by the actions of thele bodies the attion of the body T will be diminihed on every fide, and decreafe in more than a duplicate ratio of the diffance.
Cor. 8. But fince the progrefs or regrefs of the apfides depends upon the decreafe of the centripetal force, that is, upon its being in a greater or lefs ratio than the duplicate ratio of the diffance $\mathcal{T P}$, in the paflage of the body from the lower apfis to the upper; and upon a like increafe in its return to the lower apfis again; and therefore becomes greatefl where the proportion of the force at the upper apfis to the force at the lower apfis recedes lartheft from the duplicate ratio of the diftances inverfly; it is plain that when the apfides are in the fyzygies, they will, by reafon of the fubducting force $K L$ or $N M-L M$, go forward more fwiffly; and in the quadratures by the additional force $L M$ go backward more flowly. When the velocity of the progrefs or nownefs of the regrels is continued for a long time, this inequality becomes exceeding grear.
Cor. 9. If a body is obliged, by a force reciprocally proportional to the fquare of its difance from any centre, to revolve in an ellipfis round that centre; and afterwards in its defcent from the upper apfis to the lower apfis, that force by a perpetual acceffion of new force is increafed in more than a duplicate ratio of the diminifhed diflance; it is manifeft that the body being impelled always towards the centre by the perpetual acceffion of this new force, will incline more towards that centre than if it were urged by that force alone which decreafes in a duplicate ratio of the R 2
dimi-

244 Matiemaitical Primitles Bcok I.

 diminifaed difance; and therefore will defcribe an orbit interior to that elliptical orbit, atid at the lower apfis approaching nearer to the centre than before. Thetefore the orbit by the acceffinn of this new forse will become more ececntrical. If now, while the body is returning from the lower to the upper aplis, it fhould decreafe by the fame degrees by which it increafed before, the body would return to its firft diffance; and therefore if the force decreafes in a yet greater ratio, the body, being now lefs attracted than before, will afcend to a ftill greater diftance, and fo the eccentricity of the orbit will be increafed ftill more. Therefore if the ratio of the increafe and decreafe of the centripetal force be augmented each revolution, the eccentricity will be augmen:ed alfo; and on the contrary, if that ratio decreafe it will be diminifhed.Now therefore in the fyftem of the bodies T, P, S, when the apfides of the orbit $P A B$ are in the quadratures, the ratio of that increare and decreafe is leaft of all, and becomes greateft when the apfides are in the fyzygies. If the apfides are placed in the quadraiures, the ratio near the apfides is lefs, and near the fyz'gies greater, than the duplicate ratio of the diffances, and from that greater ratio arifes a direct motion of the line of the aplides, as was juft now faid. But if we confider the ratio of the whoie increafe or decreafe in the progrefs between the apfides, this is lefs than the duplicate ratio of the diftances. The furce in the lower is to the force in the upper apfis, in lefs than a duplicate ratio of the diftance of the upper apfis from the focus of the ellipfis to the diftance of the lower apfis from the fame focus; and contrarywife, when the apfides are placed in the fyzygies the force

S:ct. XI. of Nitural philofopby. 245
force in the lower apfis is to the force in the upper apfis in a greater than a duplicate ratio of the diftances. For the forces $L M$ in the quadratures added to the forces of the body T compofe forces in a lefs ratio, and the forcts $K L$ in the fyzygies fubducted from the furces of the body T leave the forces in a geeater ratio. Therefore the ratio of the whole inciedfe and decreafe in the paffage between the apfides, is lealt at the quad atures and greateft at the fyzygies; and thertfore in the pafSage of the apfides fiom the quadratures to the fyzygies it is continually augmented, and increafes the eccentricity of the ellipfis; and in the paffage from the fyzygies to the quadratures it is perpetually decreating, and diminilhes the eccentricity.

Cor. 10. That we may give an account of the errors as to latitude, let us fuppofe the plane of the orbit $E \supset T$ to remain immoveable; and from the caufe of the errors above explained it is manifert, that of the two forces $N M, M L$ which are the only and entire caufe of them, the force $M L$ acting always in the plane of the orbit $P A B$ never difturbs the motions as to latitude; and that the force $N M$, when the nodes are in the fyzygies, acting alfo in the fame plane of the orbit, does not at that time affect thofe motions, But when the nodes are in the quadratures, it difturbs them very much, and attracting the body P perpetually out of the plane of its orbit, it diminifhes the inclination of the plane in the palfage of the body from the quadratures to the fyzygies, and again increafes the fame in the paffage from the fyzygies to the quadratures. Hence it comes to pass that when the body is in the fyzygies the inclination is

246 Mathematical Principles Bock I.
then leaft of all, and returns to the firft magnitude nearly, when the body arrives at the next node. But if the nodes are firtuate at the octants after the quadratures, that is between C and A, D and B, it will appear from what was juft now Shewn that in the palfage of the body P from cither node to the ninetieth degree from thence, the inclination of the plane is perpecually dimininhed; then in the paffage through the next 45 degretes, to the next quadrature, the inclination is increafed; and afterwards again, in its paffoge through another 45 degrees to the next node, it is diminifhed. Therefore the inclination is more diminithed than increared, and is therefore always leff in the fubfequent node than in the preceding one. And ty a like reafoning, the inclination is more increafed than diminifild, when the nodes are in the other octants betwcen A and D, B and C. The inclination therefore is the greateft of all when the nodes are in the fyzygics. In their paffage from the fyzygies to the quadratures the inclination is diminified at each appulfe of the body to the nodes; and becomes leaft of all when the nodes are in the quadratures, and the body in the fyzygies; then it increafes by the fame degrecs by which it decreafed before; and whin the nodes come to the next fyzygics returns to its former magnitude.

Cor. il. Becaufe when the nodes are in the quadratures the body P is perpetually attracted from the plane of its orbit; and becaufe this attraction is made towards S in its paffage from the node C through the conjunction d to the node D; and to the contrary part in its paffage from the node D through the eppofition B to the node $C_{\text {; }}$

Sect. XI. of Natural Pisibopily. $2+7$
it is manifeft that in its motion from the node C, the body recedes continualiy from the former plane $C D$ of its orbit till it comes to the next node; and therefore at that node, being now at its greareft diftance from the firft plane $C D$, it will pafs through the plane of the orbit EST not in D, the other node of that plane, but in a point that lies nearer to the body S, which therefore becomes a new place of the node in antecedentia to its former place. And by a like reafoning, the nodes will continue to recede in their paffage from this node to the next. The nodes therefore when fituate in the quadratures recede perpetually, and at the fyzygies, where no perturbation can be produced in the motion as to latitude, are quiefcent; in the intermediate places they partake of both conditions, and recede more flowly; and therefore being always either retrograde or ftationary, they will be carried backwards, or in antecedentia, each revolution.

Cor. 12. All the errors defcribed in thefe corollaries are a little greater at the conjunction of the bodies P, S, than at their oppofition; becaufe the generating forces $N M$ and $M L$ are greater.

Cor. 13. And fince the caufes and proportions of the errors"and variations mentioned in thefe coroilaries do not depend upon the magnitude of the body S, it follows that all things before demonftrated will happen, if the magnitude of the body S be imagined fo great as that the fy fem of the two bodies P and T may revolve about it, And from this increafe of the body S, and the conlequent increafe of its centripetal force from which the errors of the body P arife, it will follow that all thefe errors, at equal diftances, will be greater R 4
in

248 Matbematical Printiples Book I.
in this cafe, than in the other where the body S revolves about the fyftem of the bodits P and T.

Cor. 14. But fince the forces $N M, M L$, when the body S is exceedingly diftant, are very nearly as the force $S K$ and the ratio of $P T$ to $S T$ conjundly; that is, if both the diftance $I T$, and the abfolute force of the body S be given, as $S T^{3}$ reciprocally; and fince thofe forces $N M, M L$ are the caufes of all the errors and effects treated of in the foregoing corollaries; it is manifeft, that all thofe effects, if the fy ftem of bodies T and P continue as before, and only the diffance $\triangle T$ and the abfolute force of the body S be changed, will be very nearly in a ratio compounded of the direct ratio of the abfolute force of the body S, and the triplicate inverfe ratio of the diftance $S T$. Hence if the fyftem of bodies T and P revolve about a diffant body S; thofe forces $N M, M L$ and their effeets will be (by cor. 2 and 6 . prop. 4.) reciprocally in a duplicate ratio of the periodical time. And thence alfo if the magnitude of the body S be proportional to its abfolute force, thofe forces $N M, M L$, and their effects, will be directly as the cube of the apparent diameter of the diftant body S viewed from T, and fo vice versâ. For theferatio's are the fame as the compounded ratio above-mentioned.

Cor. 15. And becaufe if the orbits ESE and $P A B$, retaining their figure, proportions and inclination to each other, fhould alter their magnitude; and the forces of the bodies S and T fhould either remain, or be changed in any given ratio; there forces (that is, the force of the body T which obliges the body P to deflect from a rectilincar

Sect. XI. of Natural Pbilofophy. 249
linear courfe into the obbit $P A B$, and the force of the body S, which caufes the body P to deviate from that orbit) would act always in the fame manner, and in the fame proportion; it follows that all the effects will be fimilar and proportional, and the times of thofe effects proportional alfo; tbat is, that all the linear trrors will be as the diameters of the orbits, the angular errors the fame as before; and the times of fimilar linear errors, or equal angular errors as the periodical times of the orbits.

Cor. 16. Therefore if the figures of the orbits and their inclination to each other be given, and the magnitudes, forces, and diftances of the bodies be any how changed; we may, from the errors and times of thofe errors in one cafe, collect very nearly the errors and times of the crrors in any cther cafe. But this may be done more expeditioully by the following method. The forces $N M, M L$, other things remaining unatered, are as the radius $T P$; and their periodical effects (by cor. 2. lem. 10.) are as the forces, and the fquare of the periodical time of the body P conjun ℓl ly. Thefe are the linear errors of the body P; and hence the angular errors as they appear from the centre T (that is the motion of the aplides and of the nodes, and all the apparent errors as'to longitude and latitude) are in each revolution of the body P, as the fquare of the time of the revolution very nearly. Let thefe ratio's be compounded with the ratio's in cor. 14. and in any fyftem of bodies T, P, S, where P revolves about T very near to it , and T revolves about S at a great diftance, the angular errors of the body P, obferved from the centre T, will be in each revolution of the body

250 Mathematical Principles Book I. body P as the fquare of the periodical time of the body P directly, and the fquare of the periodical time of the body I inverfely. And therefore the mean motion of the line of the apfides will be in a given ratio to the mean motion of the nodes; and both thofe motions will be as the periodical time of the body P directly, and the fquare of the periodical time of the body T inverfely. The increafe or diminution of the eccentricity and inclination of the orbit $P A B$ makes no fenfible variation in the motions of the apfides and nodes, unlefs that increafe or diminution be very great indeed.

Cor. 17. Since the line $L M$ becomes fometimes greater and fometimes lefs than the radius $P T$, let the mean quantity of the force $L M$ be expreffed by that radius $P T$; and then that mean force will be to the mean force $S K$ or $S N$ (which may be alfo expreffed by $S T$) as the length $P T$ to the length $S T$. But the mean force $S N$ or $S T$, by which the body T is retained in the orbit it deferibes about S, is to the force with which the body P is retained in its orbit about T, in a ratio compounded of the ratio of the radius $S T$ to the radius $P T$ and the duplicate ratio of the periodical time of the body P about T to the periodical time of the body T about S. And ex equa, the mean force $L M$ is to the force by which the body P is retained in its orbit about T (or by which the fame body P might revolve at the diftance $P T$ in the fame periodical time about any immoveable point T) in the fame duplicate ratio of the periodical times. The periodical times therefore being given, together with the diftance $P T$, the mean force $L M$ is alfo given; and that force being given, there is given alfo the force $M N$

SECT. XI. of Natural Pbilofophy. 251 very nearly, by the analogy of the lines $P S$, and $\boldsymbol{M} \boldsymbol{N}$.

Cor. 18. By the fame laws by which the body P revolves about the body T, let us fuppofe many fluid bodies to move round T at equal difances from it; and to be fo numcrous that they may all become contiguous to each other, fo as to form a fluid annulus or ring, of a round figure and concentrical to the body T; and the feveral parts of this annulus, performing their motions by the fame law as the body P, will draw nearer to the body T and move fwifter in the conjuntion and oppofition of themfelves and the body S, than in the quadratures. And the nodes of this annulus, or its interfections with the plane of the orbit of the body S, or T, will reft at the fyzygies; but out of the fyzygies they will be carried backward, or in antecedentia; with the greateft fwifterefs in the quadratures, and more flowly in other places. The inclination of this annulus aifo will vary, and its axis will offillate each revolution, and when the revolution is compleated will return to its former firtuation, except only that it will be carried round a little by the practufion of the nodes.
Cor. 19. Suppofe now the fptixrical body T, confifting of fome matter not fluid, to be enlarged, and to extend it felf on every fide as far as that annulus, and that a channel were cut all round its circumference containing water; and that this fphere revolves uniformly about its own axis in the fame periodical time. This water being accelerated and retarded by turns (as in the laft corollary) will be fwifter at the fyzygies, and hower at the quadratures than the furface of the globe, and fo will

2ј2 Matberatical Principles Book I.

ebb and flow in its channel after the manner of the Sea. If the attration of the body S were taken away; the water would acquire no motion of flux and reflux by revolving round the quiefcent centre of the globe. The cafe is the fame of a globe moving uniformly forwards in a right line, and in the mean time revolving about its centre, (by cor. 5. of the laws of motion) and of a globe uniformly attracted from its rectilinear courfe (by cor. 6. of the fame laws.) But let the body S come to act upon it, and by its unequable attraction the water will receive this new motion. For there will be a ftronger attraction upon that part of the water that is neareft to the body, and a weaker upon that part which is more remore. And the force $L M$ will attract the water downwards at the quadratures, and deprefs it as far as the fyzygies; and the force $K L$ will attratt it upwards in the fyzygies, and withhold its defcent, and make it rife as far as the quadratures; except only in fo far as the motion of flux and reflux may be directed by the channel of the water, and be a little retarded by friction.

Cor. 20. If now the annulus becomes hard, ard the globe is diminifhed, the motion of flux and reflux will ceafe; but the ofcillating motion of the inclination and the pracelfion of the nodes will remain. Let the globe have the fame axis with the annulus and perform its revolutions in the fame times, and at its furface touch the annulus within, and adhere to it; then, the globe partaking of the motion of the annulus, this whole compages will ofcillate, and the nodes will go backward. For the globe, as we fhall fhew prefently, is perfectly indifferent to the receiving of all impreffions. The greareft

Sect. XI. of Natural Philoforby. 253 greateft angle of the inclination of the annulus fingle, is when the nodes are in the fyzygies. Thence in the progrefs of the nodes to the quadratures, it endeavours to diminih its inclination and by that endeavour impreffes a motion upon the whole globe. The globe retains this motion impreffed, till the annulus by a contrary endeavour deftroys that motion and impreffes a new motion in a contrary direttion. And by this means the greateft motion of the decreafing inclination happens when the nodes are in the quadratures; and the leaft angle of inclination in the oftants after the quadratures; and again, the greateft motion of reclination happens when the nodes are in the fyzygies; and the greateft angle of reclination in the octants following. And the cafe is the fame of a globe without this annulus, if it be a lietle higher or a little denfer in the xquatorial than in the polar regions. For the excefs of that matter in the regions near the xquator fupplies the place of the annulus. And though we Chould fuppofe the centripetal force of this globe to be any how increafed fo that all its parts were to tend downwards, as the parts of our Earth graviate to the centre, yet the phanomena of this and the preceding coroliary would farce be altered; except that the places of the greateft and leaft height of the water will be different. For the water is now no longer fuftained and kept in its orbit by its centrifugal force, but by the channel in which it flows. And befides the force $L M$ attrats the water downwards moft in the quadratures, and the force $K L$ or $N M-L M$ attracts it upwards moft in the fyzygies. And thefe forces conjoined ceare to attract the water downwards, and begin to attrate it upwards in the octants before the fyzygies; and
ceafe

254 Mathematical Princifles Book I. cease to attract the water upwards, and begin to attract the water downwards in the octants after the fyzygies. And thence the grateft height of the water may happen about the octants after the fyzygies; and the leaft height about the octants after the quadratures; excepting only fo far as the motion of afcent or delcent impreffed by thefe forces may by the vis infira of the water continue a little longer, or be fopt a little fooner by impediments in its channel.
Cor. 21. For the fame reafon that redundant matter in the xquatorial regions of a globe caufes the nodes to go backwards, and therefore by the increafe of that matter that retrogradation is increafed, by the diminution is diminifhed, and by the removal quite ceafes; it follows, that if more than that redundant matter be taken away, that is, if the globe be either more depreffed, or of a more rare confiftence near the xquitor than near the poles, there will arife a motion of the nodes in confequentia.

Cor. 22. And thence from the motion of the nodes is known the conflitution of the globe. That is if the globe retains unalecrably the fame poles, and the motion (of the nodes) be in antecedentia, there is a redundance of the matter near the equator; but if in confequentia, a deficiency. Suppofe an uniform and exactly fpharical globe to be firft at reft in a free face; then by fome impulfe made obliquely upon its fuperficies to be driven from its place, and to receive a motion, partly circular and partly right forward. Becaufe this globe is perfeetly indifferent to all the axes that pars through its centre, nor has a greater propenfity to one axis or to one fituation of the axis than to any other,

Sect. XI. of Natural Pbilofopby. 255
it is manifeft that by its own force it will never change its axis, or the inclination of it. Let now this globe be impelled obliquely by a new impulice in the fame part of its fuperficies as before; and fince the effett of an impulie is not at all changed by its coming fooner or later, it is manifeft that thefe two impulfes fucceffively impreffed will produce the fame motion, as if they were impreffed at the fame time; that is, the fame motion as if the globe had been impelled by a fimple force compounded of them both (by cor. 2. of the laws) that is a fimple motion about an axis of a given inclination. And the cafe is the fame if the fecond' impulfe were made upon any other place of the xquator of the firft motion; and allo if the firft impulfe were made upon any place in the xquator of the motion which would be generated by the fecond impulfe alone; and therefore alio when bort impulfes are made in any places whatfoever; for thefe impulfes will generate the fame circular motion, as if they were impreffed together and at once in the place of the interfections of the xquators of thofe motions, which would be generated by each of them feparately. Therefore a homogeneous and perfect globe will not retain feveral diffinet motions, but will unite all thofe that are impreffed on it, and reduce them into one; revolving, as far as in it lies, always with a fimple and uniform motion about one fingle given axis, with an inclination perpetually invariable. And the inclination of the axis, or the velocity of the rotation will not be changed by centripetal force. For if the globe be fuppofed to be divided into two hemifpheres, by any plane whatfoever paffing through

255 Mathematical Principles Book I. through its own centre and the centre to which the force is directed; that force will always urge each hemifphere equally; and therefore will nor incline the globe any way as to its motion round its own axis., But let there be added any where between the pole and the zquator a heap of new matter like a mountain, and this by its perperual endeavour to recede from the centre of its motion, will difturb the motion of the globe, and caufe its poles to wander about its fuperficies, defcribing circles about themfelves and their oppofite points. Neither can this enormous evagation of the poles be corrected, unlefs by placing that mountain either in one of the poles, in which care by cor. 21 . the nodes of the xquator will go forwards; or in the requatorial regions, in which cafe by cor. 20. the nodes will go backward; or laftly by adding on the other fide of the axis a new quantity of matter, by which the mountain may be ballanced in its motion; and then the nodes will either go forwards or backwards, as the mountain and this newly added matter happen to be nearer to the pole or to the equator.

Proposition LXVII. Theorem XXVII.

The fame lazes of attradion leing fup-
fofed, I fay that the exterior body
S does, by radij drawn to the point
O , the common centre of gravity of
the interior bodies P and T , defcribe
round that centre areas more tropor-
tional

Sect. XI. of Natural Pbilofophy. $2 \xi 7$ tional to the times, and an orbit more approaching to the form of an ellipfis baving its focus in that centre, than it can defcribe round the innermoft and greateft body T by radij drazen to that lody.

For the attractions of the body S (Pl. 2 1. Fig. 3.) towards T and P compofe its abfolute attraction, which is more directed towards O the common centre of gravity of the bodies T and P, than it is to the greatelt body T; and which is more in a reciprocal proportion to the fquare of the diftance $S O$, than it is to the fquare of the diftance $S T$; as - will eafily appear by a little confideration.

Proposition LXVIII.Theorem XXVIII.

The Same lawes of attraction suppofed, I fay that the exterior body S will, by radij drazen to O the common centre of gravity of the interior bodies P and T , defcribe round that centre, area's more froportional to the times, and an orlit more approaching to the form of an ellipfis baving its focus in that centre, if the innermoft and greateft body be agitated by thefe attractions as well as the reft, than it would do if that body were either S

253 Mathematical Principles Book 1. at ie,." as mot atracted, or were match more or much lefs attracled or mach nove or much lffs agitated.

This may be demonftrated after the fame manner as p:op. 66 . but by a more prolix reafoning, which I therefoee pafs over. It will be fufficient to onnfider it after this manner. From the demonftration of the laft propofition it is plain, that the contre, towards which the body S is urged by the two forces conjunctly, is very near to the com: mon centre of gravity of thofe two other bodies. If this centre were to coincide with that common centre, and moreover the common centre of gravity of all the three bodies were at reft; the body S on one fids, and the common centre of gravity of the other two bodies on the other fide, would defribe true ellipfes about that quiefent common centre. This appears from cor. 2. prop. 58. compared with what was demonftrated in prop. 64 and 65 . Now this accurate elliptical motion will be difturbed a little by the diftance of the centre of the two bodies from the centre towards which the third body S is attracted. Let there be added moreover a motion to the common centre of the three, and the perturbation will be increafed yet mors. Therefore the perturbation is leaft when the common centre of the three bodies is at reft; that is, when the innermoft and greatcft body T is attracted according to the fame law as the reft are; and is always grcateft, when the common centre of the three, by the diminution of the motion of the body T, begins to be moved, and is more and more agitated.

Cor.

Sect. XI. of Natural Philofopby. 259
Cor. And hence if more lifer bodies revolve about the great one, it may eafily be inferred that the orbits defcribed will approach nearer to ellipes, and the defcriptions of area's will be more nearly equable, if all the bodies mutually attract and agitate each other with accelerative forces that are as their absolute forces directly, and the squares of the diftances inversely; and if the focus of each orbit be placed in the common centre of gravity of all the interior bodies; (that is, if the focus of the firft and innermoft orbit be placed in the centre of gravity of the greateft and innermolt body; the focus of the lecond orbit in the common centre of gravity of the two innermoft bodies; the focus of the third orbit in the common centre of gravity of the three innermoft; and f_{0} on) than if the innermolt body were at reft, and was made the common focus of all the orbits.

Proposition LXIX. Theorem XXIX.
In a fyliem of Several lo dies A, B, C, D , Etc. if any one of thole bodies as A , attract all the ref i, $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}^{\circ}$. with accelerative forces that are reciprocally as the Squares of the difiances from the attracting body; and another body as B attracts alpo the reft, $\mathrm{A}, \mathrm{C}, \mathrm{D}, \Xi \mathrm{E}$. with forces that are reciprocally as the Squares of the dilances from the attracting body; the
$\mathrm{S}_{2} \quad$ absolute

260, Mathematital Princifles Book I. alfolete forces of the attracting bodies A and B will te to each other, as thofe very loikes A and B to rebich thofe fories lelo:".

For the accelcrative attractions of all the bodies D, C, D, towards A are by the fuppofition equal to each other at equal diftonces; and in like manner the acclerative attractions of all the bodies towards B are allo equal to each other at equal difances. But the abfolute attractive force of the body A is to the abfolute attradive force of the body B, as the accolerative attraction of all the bodies towards A to the accelerative attraction of all the bodies towards B at equal diftances; and fo is alfo the accelerative attration of the body B to wards A, to the accelerative autraction of the body A iowards B. But the accelerative attraction of the body B towards A is to the accelerative attraction of the budy A towards B as the mafs of the body A to the mals of the body B; becaufe the motive forces which (by the 2 d , 7 th, and 8:h definition) are as the accelerative forcts and the bodies attracted conjunctly, are here cqual to one enorher by the third law. Therefore the abfolute attractive force of the body A is to the abfoluie attrative force of the body B as the mals of the body A to the mafs of the body B. O. E. D.

Cor. 1. Therefore if each of the bodies of the fyftem A, B, C, D, ơc. does fingly atract all the reft with accelerative forces that are reciprocally as the fquares of the diftances from thee attracting body; the abfolute forces of all thofe bodies will be to each other as the bodies themfelves.

Cor.

Sec.T. XI. of Natmal Pidiapphy. $26 \mathbf{1}$
Cor. 2. By a like reafoning if cach of the bodies of the fy ftem $A, B, C ; D$, ofc. do fingly attract all the reft with accelciative forces, which are either reciprocally or directly in the ratio of any power whatever of the diftances from the attracting body; or which are defined by the diftances from each of the attrasting bodies according to any common law; it is plain that the abfolute forces of thofe bodies are as the bodies themfelves.

Cor. ;. In a fyftem of bodies whofe forces de-* creare in the duplicate ratio of the diftances, if the leffer revolve about one very great one in ellipfes, having their common focus in the centre of that great body, and of a figure exceediag accurate; and moreover by radij drawn to that great body defcribe area's proportional to the timss exactly; the abfolute forces of thofe bodies to each other will be either accurately or very nearly in the ratio of the bodics. And fo on the contrary. This appears from cor. of prop. 68. compared with the firft corollary of this prop.

Scholium.

Thefe propofitions naturally lead us to the analogy there is between centripetal forces, and the central bodies to which thole forces ufe to be directed. For it is reafonable to fuppofe that forces which are directed to bodies fhould depend upon the nature and quantity of thofe bodies, as we fee they do in magnetical experiments. And when fuch cafes occur, we are to compute the atractions of the bodies by affigning to each of their particles its proper force, and then collecting the fum of S 3 them

262 Mathematical Principles Book I.
them all. I here ufe the word attraction in general for any endeavour, of what kind foever, made by bodies to approach to each other; whether that endeavour arife from the action of the bodies themfelves as tending mutually to, or agitating each other by fpiris cmitted; or whether it arifes from the action of the xther or of the air, or of any medium whatfoever, whether corporeal or incorporeal, any how impelling bodies placed therein towards each other. In the fame general fenfe I ufe the word impulfe, not defining in this treatife the fpecies or phyfical qualities of forces, but inveftigating the quantities and mathematical proportions of them; as I obferved before in the definitions. In mathematics we are to inveftigate the quantities of forces with their proportions confequent upon any conditions fuppofed; then when we enter upon phyfics, we compare thofe proportions with the phanomena of Nature; that we may know what conditions of thofe forces anfwer to the feveral kinds of attractive bodies. And this preparation being made, we argue more fofely concerning the phyfical fpecies, caufes, and proportions of the forces. Let us fee then with what forces fpherical bodies confifting of particles encued with attractive powers in the manner above fpoken of muft act mutually upon one another; and what kind of motions will follow from thence.

Sect. XII. of Natuial Pijilofophy. 263

Section XII.

Of the attractive forces of Spherical bodies.

Pkoposition LXX. Theorem XXX.
If to every point of a Spherical furface there tend equal ceatripetal forces decreafing in the duplicate ratio of the diftances from thofe points; 1 fay that a corpuscle placed weithin that fuperficies will not be attracted by thoje forces any way.

Let HIKL (Fl. 2 I. Fig. 4.) be that fpharical fuperficies, and P a corpufle placed within. Through P let there be drawn to this fuperficies the two lines $H K, I L$, intercepting very fmall arcs $H T$, $K L$; and becaufe (by cor. $3 . \mathrm{lem} .7$.) the triangles $H P I, L P K$ are alike, thofe arcs will be propor-
S_{4}

264 Mathensatical Principles Book I. tional to the diffances $H \Gamma, L P$; and any particles at $H I$ and $K L$ of the fpharical fuperficies, terminated by right lines paffing through P, will be in the duplicate ratio of thole diftances. Therefore the fortes of thefe particles exerted upon the body P are equai betwcen themfelves. For the forces are as the particles dircetly and the fquares of the diflances inverfely. And thefe two ratio's compore the ratio of equality. The attractions therefore being made equally towalds contrary parts deftroy each other. And by a like reafoning all the attrations through the whole fpharical fuperficies are deftroyed by contrary attractions. Therefore the body P will not be any way impelled by thofe attradions. Q. E. D.

Proposition LXXI. Theorem XXXI.
The fame things fuppoled as alove, I fay that a corpificle flaced without the fpharical fiperficies is attracied towards the centre of the Sphere weith a force recitrocally proportional to the fiuare of its difance from that centre.

Let $A H K B$, abkb (Pl. 21. Fig. 5.) be two equal fpharical fuperficies defrribed about the centres $\mathcal{S}, s ;$ their diameters $A B, a b$; and let P and p be two corpurcles firuate without the fpheres in thofe diameters produced. Let there be drawn from the corpufles the lines $P H K, P I L, p b k$, pils cut-

Sect. XII. of Natural Pbilofopby. 266 cutting off from the great circles $A H B, a b b$, the equal arcs $H K, b k, I L, i l$; and to thofe lines let fall the perpendiculars $S D, s d, S E$, se, $I R$, ir ; of which let $S D$, sd cut $P L, p l$ in F and f. Let fall alfo to the diameters the perpendiculars $1 Q$, ig. Let now the angles $D P E, d p e$ vaniih; and becaufe $D S$ and $d s, E S$ and es are tqual, the lines $P E, P F$, and $p e, p f$, and the lineolx $D F$, $d f$ may be taken for equal; becaufe their laft ratio, when the angles $D P E$, dpe vanih rogether, is the ratio of equality. Thefe things then fuppofed, it will be, as $P I$ to $P F$ fo is $K I$ to $D F$, and as pf to $p i$ fo is $d f$ or $D F$ to $r i$; and $e x$ aquo, as $P I \times p f$ to $P F \times p$ ifo is $R I$ to $r i$, that is (by cor. 3. lem. 7.) fo is the arc $I H$ to the arc $i b$. Again $P I$ is to $P S$ as $I Q$ to $S E$, and p stopias se or $S E$ to $i q$; and ex aquo $P I \times p$ s to $P S \times p i$ as $I Q$ to ig. And compounding the ratio's $P I^{2} \times p f \times p s$ is to $\mathrm{pi}^{2} \times P F \times P \mathcal{S}$, as $I H \times I Q$ to $i h \times i g$; that is, as the circular fuperficies which is defrribed by the arc $I H$ as the lemicircle $A K B$ revolves about the diameter $A B$, is to the circular fuperficies defcribed by the arch ib as the femicircle $a k b$ revolves about the diameter $a b$. And the forces with which thefe fuperficies attract the corpurcles p and p in the direction of lines tending to thofe fuperficies are by the hypothefis as the fuperficies themfelves directly, and the fquares of the diftances of the fuperficies from thofe corpurcles inverfely; that is, as $p f \times p$ s to $P F \times P S$. And thefe forces again are to the oblique parts of them which (by the refolution of forces as in cor. 2. of the laws) tend to the centres in the directions of the lines $F S, P s$, as $P!$ to $P Q$, and

266 Mathematical Principles Book L. and $p i$ to $p q$; that is (becaufe of the like triangles FIQ and PSF, pi q and $p s f$) as $P S$ to $P F$ and ps to $p f$. Thence ex ague, the attraction of the corpuscle P towards S is to the attraction of the corpuscle p towards s, as $\frac{P F \times p f \times p s}{P S}$ is to $\frac{P f \times r F \times P S}{P S}$, that is, as $p S^{2}$ to $P S^{2}$. And by a like reasoning the forces with which the superficies defcribed by the revolution of the ares $K L$, $k l$ attract thole corpufcles, will be as $p s^{2}$ to $P S^{2}$. And in the fame ratio will be the forces of all the circular fuperficies into which each of the Spherical fuperficies may be divided by taking sd always equal to $S D$, and se equal to $S E$. And therefore by compofition, the forces of the entire fpharical fuperficies exerted upon thofe corpuscles will be in the fame ratio. Q. E. D :

Proposition LXXII. Theorem XXXII.

If to the Several points of a Sphere there tend equal centripetal forces decreasing in a duplicate ratio of the difances from thole points; and there lee given both the denfity of the Sphere and the ratio of the diameter of the Sphere to the diftance of the corpuscle from its centre; I fay that the force with which the corpuscle is attra-

Sect. XII. of Natural Pbilofoph. 267 ated is proportional to the femi-dianieter of the Sphere.

For conceive two corpufles to be feverally attrazted by two fpheres, one by one the other by the other, and their diffances from the centres of the fpheres to be proporcional to the diameters of the fipheres refpectively; and the fpheres to be refolved into like particles difpofed in a like fituation to the corpurcles. Then the attractions of one corpufcle towards the feveral particles of one fphere, will be to the attrations of the other towards as many analogous particles of the other fphere in a ratio compounded of the ratio of the particles direetly and the duplicate ratio of the diffances inverfely. But the particles are as the Ipheres, that is in a triplicate ratio of the diameters, and the diflances are as the diameters; and the firft ratio directly with the laft ratio taken twise inverfly, becomes the ratio of diameter to diameter. O. E. D.

Cor. I. Hence if corpufles revclve in circles about (pheres compofed of matter equally attrating; and the diffances from the cencres of the fpheres be proportional to their diameters; the periodic times will be equal.
Cor. 2. And vice versâ, if the periodic times are equal, the diffances will be proportional to the diameters. Thefe two corollaries appear from cor. 3 . prop. $4 \cdot$

Cor. 3. If to the feveral points of any two folids whatever, of like figure and equal denfity, there tend equal centripetal forces decreafing in 3 duplicate ratio of the diftances from thofe points; the forces with which corpufcles placed in a like fituation

268 Mathematical Principles Book I. fituation to thole two folds, will be attracted by them will be to each other as the diameters of the folids.

Proposition LXXIfi. Theorem XXXiII.
If to the Several points of a given spisere there tend equal centripetal forces decreasing in a duplicate ratio of the diflances from the points; I fay that a corpuScle placed within the Sphere is attracted by a force proportional to its distance from the centre.

In the Sphere $A B C D$ (Pl. 21. Fig. ठ.) deScribed about the centre S, let there be placed the corpufcle P; and about the fame centre S, with the interval $S P$, conceive defribed an interior Sphere $P E Q F$. It is plain (by prop. 70.) that the concentric Spherical fuperficies of which the difference $A E B F$ of the spheres is comported, have no effed at all upon the body P; their atrations being deftroyed by contrary attractions. There remains therefore only the attraction of the interior fphere $P E Q F$. And (by prop. 72.) this is as the diffance PS. Q. E.D.
SCHOLIUM.

By the fuperficies of which I here imagine the Solids comported, I do not mean superficies purely math-

Plate XXI.Vot.I.P. 268 .
$\overline{\mathscr{F} \text { ig.1.p.228. }}$

SECT. XII. of NaturalPbilofophy. 259 mathematical, but orbs fo extreamly thin, that their thicknefs is as nothing; that is, the evanefcent orbs; of which the fphere will at laft confift, when the number of the orbs is increafed, and their thicknefs diminifhed without end. In like manner, by the points of which lines, furfaces and folids are faid to be compofed, are to be underftood equal particles whofe magnitude is perfectly inconfiderable.

Proposition LXXIV.Theorem XXXIV.

The fame things fuphofed, I fay that a corpuscle fituate weithout the fphere is attracted with a force reciprocally proportional to the fquare of its difance from the centre.

For fuppofe the fphere to be divided into innumerable concentric fpharical fuperficies, and the attractions of the corpufcle arifing from the feveral fuperficies will be reciprocally proportional to the fquare of the diftance of the corpufcle from the centre of the fphere (by prop. 71.) And by compofition, the fum of thofe attrations, that is, the attration of the corpufcle towards the entire fphere, will be in the fame ratio. Q. E. D.
Cor. i. Hence the attractions of homegeneous fpheres at equal diffances from the centres will be as the fpheres themfelves. For (by prop. 72) if the diftances be proportional to the diameters of the fpheres, the forces will be as the diameters. Let the

270 Mathematical Princililes Book I. the greater diffance be diminifhed in that ratio; and the diffances now being equal, the attration will be increafed in the duplicate of that ratio; and therefore will be to the other attraction in the triplicate of that ratio; that is, in the ratio of the fpheres.

Cor. 2. At any diffances whatever, the attractions are as the fpheres applied to the fquares of the diffances.
Cor. 3. If a corpufle placed without an homogencous fphere is attratted by a force reciprocally proportional to the fquare of its diftance from the centre, and the fphere confifts of attractive particles; the force of every particle will decreafe in a duplicate ratio of the diftance from each particle.

Proposition LXXV. Theorem XXXV.

If to the feveral points of a given Sphere there tend equal centrifetal forces decreafing in a duplicate ratio of the difances from the points; I fay that another finilar jphere weill le attracled ly it with a force reciprocally proportional to the fauare of the difance of the centres.

For the attration of every particle is reciprocally as the fquare of its diftance from the centre of the attracting fphere (by prop. 74.) and is therefore the fame as if that whole attracting force iffued from

Sect. XII. of Natural Pbilofophy. 271 one fingle corpufle placed in the centre of this fphere. But this attration is as great, as on the other hand the attraction of the fame corpufcle would. be, if that were it felf attrated by the feveral particles of the attrated fphere with the fame force with which they are attracted by it. But that attraction of the corpufcle would be (by prop. 74.) reciprocally proportional to the fquare of its diffance from the centre of the fphere; therefore the atcration of the fphere, equal thereto, is alfo in the fame ratio. Q. E. D.

Cor. I. The attractions of fpheres towards other homogeneous fpheres, are as the attracting fpheres applied to the fquares of the diffances of their centres from the centres of thofe which they attract.

Cor. 2. The cafe is the fame when the attracted fphere does alfo attract. For the feveral points of the one attract the feveral points of the other with the fame force with which they themfelves are attracted by the others again; and therefore fince in all attractions (by law 3.) the attracted and attracting point are both equally acted on, the force will be doubled by their mutual attractions, the proportions remaining.

Cor. 3. Thofe feveral truths demonftrated above concerning the motion of bodies about the focus of the conic fections, will take place when an attracting fphere is placed in the focus, and the bodies move without the fphere.

Cor. 4. Thofe things which were demonftrated before of the motion of bodies about the centre of the conic fections take place when the motions are performed within the fphere.

Proposition LXXVI.Theorem XXXVI.
If Spheres be bervever diflimilar (as to dienfity of matter and attractive force) in the progrefs right onward from tise centre to the circumference; but every where fimilar, at every given dil'iance from the centre, on all fides round about; and the attrative force of every point decreafes in the duplicate ratio of the diflance of the body attracted; I fay that the whole force with which one of thefe Spberes attraits the other, zeill be reciprocally proiortional to the Square of the difiance of the centres.

Imagine feveral concentric fimilar fpheres, $A B$, $C D, E F$, ớc. (Pl. 22. Fig. 1.) the innermoft of which added to the outermoft may compore a matter more denfe towards the centre, or fubducted from them may leave the fame more lax and rare. Then by prop. 75. thefe fpheres will attract other fimilar concentric (pheres $G H, I K, L M, \not \subset c$. eacł the other, with forces reciprocally proportional to the fquare of the diftance $S P$. And by compofition or divifion, the fum of all thofe forces, or the excefs of any of them above the others; that is, the entire force with which the whole fphere $A B$ (compofed of any concentric fpheres or of their diffe-

Ssec. XII. of Natural P',ilofopby. 273
differences) will attract the whole fphere $C H$ (compored of any concentric fpheres or their differences) in the fame ratio. Let the number of the concentric Spheres be increafed in infinitum, fo that the denfity of the 'mater together with the attractive force may, in the progrefs from the circumference to the centre, incieafe or decreafe according to any given law; and by the addition of matter not attractive let the deficient denfiry be fupplied that fo the fpheres may acquire any form defired; and the force with which one of thefe attracts the other, will be fill, by the former reafoning, in the fame rario of the fquare of the diftance inverfely. O.E.D.

Cor. 1. Hance if many fpheres of this kind, fimilar in all refpects, attract each other mutually; the accelerative attractions of each to each, at any equal diffances of the cencres, will be as the attracting fpheres.

Cor 2. And at any unequal diffances, as the attracting fpheres applied to the fquares of the diflances between the centres.

Cor. 3. The motive attractions, or the weights of the fpheres towards one another will be at equal diftances of the centres as the attratting and attracted fpheres conjunctly; that is, as the products arifing from multiplying the fpheres into each other.

- Cor. 4. And at unequal diftances, as thofe products directly and the fquares of the diffances between the centres inverfely.

Cor. 5. Thefe proportions take place allo, when the attration arifes from the attractive virtue of both fpheres mutually exerted upon each other. For the attraction is only doubled by the conjuncti-

274 Mathematical Principles Book 1. on of the forces, the proportions remaining as before.

Cor. 6. If fpheres of this kind revolve about others at reft, each about each; and the diffances between the centres of the quiefent and revolving bodies are proportional to the diameters of the quiefcent bodies; the periodic times will be equal.

Cor. 7. And again, if the periodic times are equal, the diftances will be proportional to the diameters.

Cor. 8. All thofe truths above demonftrated, relating to the motions of bodies about the foci of conic fections, will take place, when an attracting fphere, of any form and condition like that above described, is placed in the focus.

Cor. 9. And alfo when the revolving bodies are alfo attracting fpheres of any condition like that above defcribed.

Proposition LXXVII. Theorem XXXVII.

If to the Several points of Spheres there tend centripetal forces proportional to the difances of the points from the attracted bodies; I fay that the compounded force with which two foberes attralt each other mutually is as the difance letreeen the centres of the fpheres.
CASE 1. Let $A E B F$ (Pl. 22. Fig. 2.) be a Sphere; S its centre; P a corpurcle attrated; PASB the axis of the fphere palfing through the centre of the corpufcle; $E F$, of two planes cutting the fphere, and perpendicular to the axis, and

Sect. XII. of Natural Pkilorophy. 275
equidiftant, one on one fide, the orher on the other, from the centre of the fphere; G and g the interfetions of the planes and the axis; and H any point in the plane $E F$. The centriperal force of the point H upon the corpurcle P, exerted in the direction of the line $P H$, is as the diftance $P H$; and (by cor. 2. of the laws) the fatme exerted in the direCtion of the line $P G$, or toxards the centre S, is at the lentth $P G$. Therefore the force of all the points in the plane $E F$ (that is of that whole plane) by which the corpurcle P is attrated towards the centre S is as the diftance $P G$ multiplied by the number of thofe points, that is as the folid contained under that plane EF and the difance $P G$. And in like manner the force of the plane of by which the corpuicle P is attrated towards the centre Ω, is as that plane drawn into its diftance $P g$, or as the equal plane $E F$ drawn into that diftance $P g$; and the fum of the forces of both planes as the plane $E F$ drawn into the fum of the diftances $P G+P g$, that is as that plane drawn into twice the diffance $P S$ of the centre and the corpurcle ; that is, as twice the plane EF drawn into the diftance $P S$, or as the fum of the equal planes $E F-1-\epsilon$ drawn into the fame diftance. And by 2 like reafoning the forces of all the planes in the whole fphere, equi-diftant on each fide from the centre of the Iphere, are as the fum of thofe planes drawn into the diffance $P S$, that is, as the whole fphere and the diftance PS conjuncly. Q. E. D.
CAsE 2. Let now the corpufle P attrate the fphere $A E B F$. And by the fame reafoning it will appear that the force with which the fphere is attracted is as the diftance $P S$. Q. E. D.

276 Mathematical Principles Book I.
CASE 2. Imagine another fphere compored of innumerable corpufcics F; and becaufe the force with which every corpufcle is attracted is as the diftance of the corpuicle from the centre of the firft (phere, and as the fame fphere conjuncty, and is therefore the fime as if it all proceeded from a fingle corpufcie fituate in the centre of the fphere; the entire force with which all the corpufcles in the fecond fphere are attrated, that is, with which that whole fphere is attracted, will be the fame as if that fohere were attracted by a force iffuing from a fingle corpufcle in the centre of the firft fphere; and is therefore proportional to the diffance between the centres of the fpheres. Q. E. D.

Case 4. Lee the fpheres attract each other mutually, and the force will be doubled, but the proportion will remain. Q.E.D.

CASE 5. Let the corpufle pbe placed within the fphere AEBF; (Fig.3.) and becaufe the force of the plane of upon the corpufcle is as the fold contained under that plane and the diftance $p g$; and the contrary force of the plane $E F$ as the folid contained under that plane and the diftance $p G$; the force compounded of both will be as the difference of the folids, that is as the fum of the equal planes drawn into half the difference of the diftances, that is, as that fum drawn into $p S$, the diftance of the corpufcle from the centre of the fphere. And by a like reafoning, the attraction of all the planes $E F$, of throughout the whole fphere, that is, the attraction of the whole fphere, is conjunctly as the fum of all the planes, or as the whole fphere, and as $p S$ the diftance of the corpufcle from the centre of the fphere. Q.E.D.

Case

Sect. XII. of Natural Philnophy. 277
Case 6. And if there be compofed a new sphere out of innumerable corpufcles wish as p, fituate within the firft f here $A E B F$; it may be proved as before that the attraction whether, fingle of one Sphere towards the other, or mutual of both towards each other, will be as the diftance $p S$ of the centres. O. E. D.

proposition LXXVIII. Theorem XXXVIII.

If Sp.teres in the progref: from the centhe to the circumference le bazever difjumilar and unequal le, lat fimilar on every fade round about at all given difances from the centre; and the at tractive force of every point be as the difance of the attraction body; I fay that the entire force with which two Spheres of this kind attract each other mutually is proportional to the dianne between the centres of the Spheres.

This is demonstrated from the foregoing propofition in the fame manner as the 76 th propoficion was demonstrated from the 75 th.

Cor. Thole things that were above demonftrated in prop. 10. and 64. of the motion of bodies round the centres of conic fections, take place when all the attractions are made by the force of spherical bodies of the condition above T 3

278 Mathematical Principles Book I. defrribed, and the attracted bodies are Spheres of the lame kind. -

Scholium.

1 have now explained the two principal cafes of attractions; to wit, when the centripetal forces decrease in a duplicate ratio of the diffances, or increase in a fimple ratio of the diffances; causing the bodies in both cafes to revolve in conic feaCtions, and composing fpharical bodies whole centripedal forces observe the fame law of increate or decrease in the reef from the centre as the forces of the particles themfelves do; which is very remarkable. It would be tedious to run over the other cafes, whole conclusions are left elegant and inportent, fo particularly as I have done these. I chute rather to comprehend and determine them all by one general method as follows.

| LE M MA XXIX.

If about the centre S (Pl. 22. Figs.) there te defcribed any circle as AEB, and about the centre \mathbf{P} there to also defcribed two circles EF, eff, cutting the first in E and e , and the line PS in F and f ; and there be letfall to PS the perpendiculars ED, ed; I fay that if the difiance of the arcs EF, cf be fuptofed to be inf. nitely diminijlied, the taft ratio of the evanescent

Sect. XII. of Natural Pijilofophy. evanefcent line D d to the evanefient line Ff is the finite as that of the line PE to the line PS .

For if the line $F e$ cut the arc $E F$ in g; and the right line $E e$, which coincides with the evanefcent are E_{c}, be produced and meet the right line $P S$ in T; and there be let fall from S to $P E$ the perpendicular $S G$; then because of the like triangles $D T E, d T e, D E S$; it will be as $D d$ to $E \in$ fo $D T$ to $T E$, or $D E$ to $E S$; and because the triangles $E e q, E S G$ (by lem. 8. and cor. 3. lem. 7.) are limilar, it will be as $E \in$ to eq or $F f$ fo $E S$ to $S G$; and ex eggo, as $D d$ to $F f$ fo $D E$ to $S G$; that is (becaufe of the fimilar triangles $P D E, P G S$) fo is $P E$ to PST. QP. D.

Proposition LXXIX. Theorem XXXIX.

Suppose a Superficies as EFf (Pl. 22. Fig. 5.) to have its breadth infiniteby diminibed, and to be just vanishing; and that the fame superficies by its revolution round the axis PS deforbes' a spherical concavo-convex Solid, to the Several equal particles of reich there tend equal centripetal forces; : I fay that the force zeith which that. Solid attracts a corpificle Situate in P , is in a ratio commonded of the ratio of the fold $\mathrm{DE}^{2} \times \mathrm{Ff}$ and the ratio of the force reith

280 Matlematial Pincitles Bcok I. which the gizen paticle in the flace Ff zeould attract the fame coip:file.

For if we confider firt the force of the fpharical fuperficies $F E$ which is generated by the revolution of the arc $F E$, and is cut any where, as in r, by the line $d c$; the annular part of the fuperficies generated by the revolution of the are $r E$ will be as the lineola $L d$, the radius of the fphere $P E$ remaining the fame; as Archimedes has demonftrated in his book of the fphere and cylinder. And the force of this fuperficies cxerted in the direction of the lines $l^{\prime} E$ or Pr fitua e ail round in the conical fuperficies, will be as this annular fuperficies it fuf; that is as the limeola $D d$, or which is the fame as the rectangle under the given radius $F E$ of the fphere and the lineola $D d$; bue that force, cxerted_in the direttion of the line PS tending to the centre S, will be lefs in the ratio of $I D$ to $I E$, and therefore will be as $I D \times D d$. Suppole now the line $D F$ to be divided into innumerable little equal particles, each of which call $D d$; and then the fuperficies $F E$ will be divided into fo many equal annuli, whofe forces will be as the fum of all the rectangles $P D \times D d$, that is, as $\frac{1}{2} \Gamma F^{2}-\frac{1}{2} P D^{2}$, and therefore as $D E^{2}$. Let now the fuperficies $F E$ be drawn into the altitude $F f$; and the force of the foiid $F F f e$ exerred upon the corpufcie P will be as $D E^{2} \times F f$; that is, if the force be given which any given particle as $F f$ exerts upon the corpufcle I at the diftance $P F$. But if that force be not given, the force of the folid $F F f e$ will be as the folid $D E^{2} \times F f$ and that force not given, conjunctly. Q.E.D.

Sect. XII. of Natural PhiloSophy. 281

Proposition LXXX. Theorem XL.

If to the Several equal parts of a Sphere A BE, (Pl. 22. Fig. 6.) defcribed about the centre S, there tend equal centripetal forces; and from the Several points D in the axis of the Sphere AB in which a corpuscle, as P , is placed, there be erected the perpendi. crlars DE meeting the Sphere in. E , and if in thole perpendiculars the lengths IDN be taken as the quantity $\frac{\mathrm{DE}^{2} \times \mathrm{PS}}{\mathrm{PE}}$ and as the force zebich a particle of the Sphere Situate in the axis exerts at the diffance PE upon the corpuscle P , conjunctly; I Say that the whole force with rebich the corpuscle P is attracted towards the Sphere is as the area ANB, comprehended under the axis of the fopere AB, and the curve line A NB, the locus of the point N .

For fuppofing the confruction in the lift lemma and theorem to fland, conceive the axis of the Sphere $A B$ to be divided into innumerable equal particles $D d$, and the whole sphere to be divided into fo many fphrical concavo-convex lamina EFf; and

282 Mathematical Principles Book I. and erect the perpendicular $d n$. By the laft theorem the force with which the lamina EFfe attrats the corpufcle P, is as $D E^{2} \times F f$ and the force of one particle exerted at the diftance $P E$ or $P F$, conjunctly. But (by the laft lemma) $D d$ is to IFf as $P E$ to $P S$, and therefore $F f$ is equal to $\frac{F \times D d}{P E} ;$ and $D E^{2} \times F f$ is equal to $D d \times \frac{D F^{2} \times P S}{P E}$; and therefore the force of the lamina $E F f c$ is as $D d \times \frac{D E^{2} \times P S}{P E}$ and the force of a particle exerted at the diftance $P F$ conjunctly, that is, by the fuppofition, as $D N \times D d$; or as the evaneffent area DNnd. Therefore the forces of all the lamine exerted upon the corpuccle P, are as all the 'ärea's $D \boldsymbol{N} \boldsymbol{n d}$, that is, the whole force of the fphere will be as the whole area ANB. "Q. E. D.
Cor. I. Hence if the centripetal force rending to the feveral particles remain always the fame 'at alld diftances, and $D N$ be mateas $\frac{D E^{2} \times P S}{P E}$; the whole force with which the corpufcle is attracted by the frere is as the area $A N B$.
Cor. 2. If the centripetal force of the particles be reciprocally as the diffance of the corpurcle attrated by it , and $D N$ be made as $\frac{D E^{2} \times I S}{P E^{2}}$; the force with which the corpufle P is attracted by the whote fphere will be as the area $A N B$.
Cor. 3. If the centripetal force of the particles be reciprocally as the cube of the diffance of the corpuccle attrated by it, and $D N$ be made as $D E^{2}$

Plate XXII. Tod. I.P. zs 2.

i

1
Γ
-

Sect. XII. of Natural Philofophy.
$\frac{\boldsymbol{D}^{F^{2}} \times P S}{P E^{4}}$; the force with which the corpufcle is attrated by the whole fphere will be as the area $A N B$.

Cor. 4. And univerfally if the centripetal force rending to the feveral particles of the fphere be fuppofed to be reciprocally as the quantity V ; and $D N$ be made as $\frac{D E^{2} \times P S}{P E \times V}$; the force with which a corpufcle is attracted by the whole fphere will be as the area $A N B$.

Proposition LXXXI. Problem XLI.

The things remaining as above it is required to meafure the area A NB. (PI. 23. Fig. 1.)

From the point P let there be drawn the right fine $P H$ touching the fphere in H; and to the axis P.AB letting fall the perpendicular $H I$, bifect $P I$ in L; and (by prop. 12. book 2. elem.) Y^{2} is equal to $P S^{2}+S E^{2}+2 P S D$. But becaufe the triangles $S P H, S H I$ are like, $S E^{2}$ or $S H^{2}$ is equal to the rectangle $P S I$. Therefore $P E^{2}$ is equal to the rettangle contained under $P S$ and $P S+S I+2 S D$; that is under P and $2 L S+2 S D$; that is under $P S$ and $2 L D$. Moreover $D E^{2}$ is $e-$ qual to $S E^{2}-S D^{2}$, or $S E^{2}-L S^{2}+2 S L D-L D^{2}$, that is, $2 S L D-L D^{2}-A L B$. For $L S^{2}-S E^{2}$ or $L S^{2}-S A^{2}$ (by prop. δ. book 2. clem.) is equal to the rectangle $A L B$. Therefore if inftead of $D E^{2}$ we write $2 S L D-L L^{2}-A L B$, the quan-

284 Mathematical Principles Book I. quantity $\frac{D E^{2} \times D S}{P E \times V}$ which (by cor. 4. of the foregoing prop.) is as the length of the ordinate $D N$, will now refolve it felf into three parts $\frac{2^{〔} L D \times r^{5} S}{P^{\prime} E \times V}-\frac{L D^{2} \times P S}{H^{\prime} E \times V}-\frac{A L E \times P S}{H^{\prime} E \times V}$; where if inftead of V we write the inverfe ratio of the centripetal force, and inftead of $P E$ the mean proportional between $P S$ and $2 L D$; thofe three parts will become ordinates to fo many curve lines, whofe areas are difcovered by the common methods. © E. D.
Exam. I. If the centripetal force tending to the Several particles of the fphere be reciprocally as the diffance; inftead of V write $P E$ the diffance; then $2 P S \times L D$ for $P E^{2}$; and $D N$ will become as $S L-\frac{1}{2} L D-\frac{1 L B}{2 L D}$. Suppore $D N$ equal to its double $2 S L-L D-\frac{A L B}{L D}$; and $2 S L$ the given part of the ordinate drawn into the length $A B$ will defribe the rectargular area $2 S L \times A L$; and the indefinite part $L D$, drawn perpendicularly into the fame length with a continued motion, in fuch fort as in its motion one way or another it m:y either by increafing or decreafing remain always equal to the length $L D$, will defcribe the area $\frac{L B^{2}-L A^{2}}{2}$ that is, the area $\leqslant L \times A B$; which taken from the former area $2 S L \times A B$ leaves the area $S L \times A B$. But the third part $\frac{A L B}{L D}$, drawn after the fame manner

Sect. XII. of Natural Pliioforly. 28 ; with a continued motion perpendicularly into the rame length, will defribe the area of an hyperbola, which fubducted from the area $S_{L \times A B}$ will leave $A N B$ the area fought. Whence arifes this conftrution of the problem. At the points L, A, B (F_{i} i. 2.) erect the perpendiculars $L h, A a, B b$; making $A a$ equal to $L B$, and $B 6$ equal to $L A$. Making $L l$, and $L B$ afymptotes, deffribe through the points a, b, the hyperbolic curve $a b$. And the chord ba being drawn will inclofe the area aba equal to the area fought $A N B$.
Ехам. 2. If the centripetal force tending to the feveral particles of the fiphere be reciprocally as the cube of the diffance, or (which is the fame thing) as that cube applied to any given plane; write $\frac{P E^{3}}{2 A S^{2}}$ for V , and $2 P S \times L D$ for $P E^{2}$; and $D N$ will become as $\frac{S L \times A S^{2}}{P S \times L D}-\frac{A S^{2}}{2 P S}-$ $\frac{A L B \times A S^{2}}{2 P S \times L D^{2}}$ that is (becaufe $P S, A S, S I$ are
 If we draw then thefe three parts into the length $A B$, the firt $\frac{L}{L} \frac{I}{D}$ will generate the area of an hyperbola; the fecond $\frac{1}{2} S I$ the area $\frac{1}{2} A B \times S I$; the third $\frac{A L B \times \subseteq I}{2 L D^{2}}$ the area $\frac{A L B \times S I}{2 L A}-\frac{A L B \times S I}{2 L B}$ that is, $\frac{1}{2} A B \times S I$. From the firft fubduct the fum of the fecond and third, and there will remain $A N B$ the area fought. Whence arifes this conftrution of the problem. At the points L, A,

286 Mathematical Principles Book I. L, A, S, B, (Fig. 3.) ereat the perpendiculars $L h$ $A a, S s, B b$, of which fuppofe S_{s} equal to $S t$, and through the point s, to the afymptotes Lh $L B$, defcribe the hyperbola as 6 meeting the perpendiculars $A a, B b$, in a and b; and the rectangle $2 A S I$, fubducted from the hyperbolic area AasbB, will leave $A N B$ the area fought.

Exam. 3. If the centripetal force tending to the feveral particles of the fpheres decreafe in a quadruplicate ratio of the diftance from the particles; write $\frac{P E^{4}}{2 A D^{3}}$ for V , then $\sqrt{\sqrt{2 Y D-I D}}$ for $P E$, and $D N$ will become as $\frac{S I^{2} \times S L}{\sqrt{2} S I} \times \frac{1}{\sqrt{L D^{3}}}$ $-\frac{S I^{2}}{2 \sqrt{2 S I}} \times \frac{1}{\sqrt{L D}}-\frac{S I^{2} \times A L B}{2 \sqrt{2 S I}} \times \frac{1}{\sqrt{L D} ;}$.
Thefe three parts drawn into the length $A B$, produce fo many areas, viz. $\frac{2 S I^{2} \times S L}{\sqrt{2} S I}$ into $\frac{I}{\sqrt{L A}}-\frac{1}{\sqrt{ } L B}$; $\frac{S I^{2}}{\sqrt{2} S I}$ into $\overline{\sqrt{L B}-\sqrt{ } L A} ;$ and $\frac{S I^{2} \times A L B}{3 \sqrt{2} S I}$ into $\frac{1}{\sqrt{L A^{3}}}-\frac{1}{\sqrt{L E^{3}}}$. And thefe after due reduction come forth $\frac{2^{C} I^{2} \times S L}{L I}, S I^{2}$, and $S I^{2}+\frac{2 S I^{3}}{3 L I}$. And thefe by fubducting the laft from the firft, become $\frac{4 \int I^{3}}{3 L I}$. Therefore the entire force with which the corpufcle P is attracted towards the centre of the fphere is as $\frac{S I^{3}}{P I}$, that is reciprocally as $P S^{3} \times P I$. Q.E.I.
$\mathbf{S E c t}^{\text {Xi nt. }}$ of Natural Pbilofopby. 287
By the fame method one may determine th ${ }^{\boldsymbol{c}}$ attraction of a corpuscle fituate within the Sphere, but more expeditiounly by the following tho. rem.

Proposition LXXXII. Theorem XLI.
In a (there defcribed about the centre S (Pl. 23. Fig. 4.) with the interval SA, if there be taken SI, SA, SP continually proportional; I fay that the attraction of a corpuscle within the Sphere in any place I , is to its attraction without the Sphere in the place P , in a ratio compounded of the Jubduplicate ratio of IS, PS the diffances from the centre, and the fubduflicate ratio of the centripetal forces tending to the centre in tho fe places P and I.

As if the centripetal forces of the particles of the Sphere be reciprocally as the diftances of the corpuscle attracted by them; the force with which the corpuscle fituate in I is attracted by the entire Sphere, will be to the force with which it is attracted in P, in a ratio compounded of the fabduplicate ratio of the diffance $S I$ to the diftance $S P$, and the fubduplicate ratio of the centripetal force in the place I arifing from any particle in the centre, to the centripetal force in the place P arifing

288 Mathematical Principles Book I. arifing from the fame particle in the centre, that is. in the fubduplicate ratio of the diftances $S I, S P$ to each other reciprocslly. Thefe two fubduplicate ratio's compofe the ratio of equality, and therefore the attractions in I and P produced by the whole fphere are equal. By the like calculation if the forces of the particles of the fphere are reciprocally in a duplicate ratio of the diftance, it will be found that the attraction in I is to the attraction in P as the diftance $S P$ to the femi-diameter S_{A} of the fphere. If thofe forces are reciprocally in a triplicate ratio of the diftances, the attractions in I and P will be to each other as $S P^{2}$ to $S A^{2}$; if in a quadruplicate ratio, as $S P^{3}$ to $S A^{3}$. Therefore fince the attraction in P was found in this laft cafe to be reciprocally as $P . S^{3} \times P I$, the attraction in I will be reciprocally as $S A^{3} \times P I$, that is, becaufe $S \boldsymbol{A}^{3}$ is given, reciprocally as $\Gamma \boldsymbol{I}$. And the progretion is the fame in infinitum. The demonftration of this theorem is as follows.

The things remaining as above conffructed, and a corpufcle being in any place P, the ordinate $D N$ was found to be as $\frac{D E^{2} \times P S}{1 E \times V}$. Therefore if $I E$ be drawn, that ordinate for any other place of the corpufcle as I, will become (mutatis mutandis) as $\frac{D E^{2} \times I S}{I E \times V}$. Suppofe the centripetal forces flowing from any point of the fphere as E, to be to each other at the diftarices $I E$ and ΓE, as $P E^{n}$ to $I E_{n}$ (where the number n denotes the index of the powers of $P E$ and $I E$) and thofe ordinates will become as $\frac{D E^{2} \times P S}{P E \times Y^{2} E^{3}}$ and $\frac{D E^{2} \times I S}{I E \times I E^{n}}$ whofe ra-

Sect. XII. of Natural Philofophy. 289
rio to each other is as $P S \times I E \times I E^{n}$ to $I S \times P E \times P E^{n}$. Becaufe $S I, S E, S P$ are in continued proportion, the triangles $S I E, S E I$ are alike; and thence $I E$ is to $P E$ as $I S$ to $S E$ or $S A$. For the ratio of $I E$ to $P E$ write the ratio of $I S$ to $S A$; and the ratio of the ordinates becomes that of $P S \times I E^{n}$ to $S A \times P E^{n}$. But the ratio of $I S$ to $S A$ is fubduplicate of that of the diftances $P S, S I$; and the ratio of $I E^{n}$ to $P E^{n}$ (because $I E$ is to $P E$ as $I S$ to $\triangle A$) is fubduplicate of that of the forces at the diftances $P S, I S$. Therefore the ordinates, and confequently the areas which the ordinates defcribe, and the attractions proportional to them, are in a ratio compounded of thole fubduplicate ratio's. Q.E. L.

Proposition LXXXIII. Problem XLII.

To find the force with which a corpurple placed in the centre of a Sphere is attracted towards any degmeat of that Sphere robatfoever.

Let P (Fl . 23. Fig. 5.) be a body in the centhe of that sphere, and RBSD a fegment thereof contained under the plane $R D S$ and the fphxrical fuperficies $R B S$. Let $D B$ be cut in F by a phrrical fuperficies $E F G$ defcribed from the centre $P_{\text {s }}$ and let the regment be divided into the parts $B R E F G S, F E D G$. Let us fuppofe that fegment to be not a purely mathematical, but a phyfical fuperficies, having forme, but a perfectly inconfiderable thickness. Let that thicknefs be called \mathbf{O}

U and

290 Matbematical Princirles Book 1. and (by what Archimedes has demonftrated) that fuperficies will be as $P F \times D F \times O$. Let us fuppofe befides the atrative forces of the particles of the fphere to be reciprocally as that power of the diffances, of which n is index; and the force with which the fuperficies $E \not G$ attracts the body P, will be (by prop. 79.) as $\frac{D E^{2} \times \mathrm{O}}{P F^{*}}$, that is, as $\frac{2 D F \times O}{P F^{n-1}}-\frac{D F^{2} \times O}{P F^{n}}$. Let the perpendicular $F N$ drawn into O be proportional to this quantity; and the curvilinear arca $B D I$, which the ordinate $F N$, drawn through the length $D B$ with a continued motion will defcribe, will be as the whole force with which the whole fegment $R B S D$ attracts the body P. Q.E. I.

Proposition LXXXIV. Prozlm XLIII.
To find the force with webich a warp fil', placed reithont the cintive of a jpirere in the axis of any fegment, is attracted by that Segmeit.

Let the body P placed in the axis $A D B$ of the fegment $E B K$ (Pl. 23. Fig. 6.) be attracted by that fegment. About the centre P with the interval $P E$ let the fphxrical fuperficies $E F K$ be defribed; and ler it divide the fegment into two parts $E B K F E$ and $E F K D E$. Find the force of the firtt of thofe parts by prop. 8 I. and the force of the latter part by rop. 83. and the fum of the forces will be the force Pf the whole fegment $E B K D E$. $\because E . I$.

Sсно-

Sect. XII. of Notural P'ilofophy.

Scholidm.
The attractions of fpharical bodies being now explained, it comes next in order to treat of the laws of attraction in other bodies confifting in like manner of attractive particles; but to treat of them particularly is not neceffary to my defign. It will be fufficient to fubjoin fome general propofitions relating to the forces of fuch bodics, and the motions thence arifing, becaufe the knowledge of thefe will be of fome little ufe in philofophical enquiries.

U 2
Seation

Section XIII.

Of the attractive forces of bodies which are not of a Spherical fosure.

Proposition LXXXV. Theorem XLII.
If a body le attracied by another, and its attraction be vafly fironger repent it is contiguous to the attracting body, than when they are fiparated from one another by a very fall interval; the forces of the particles of the attracting body decrease, in the recess of the lady attracted, in more than a duplicate ratio of the difance of the particles.

For if the forces decrease in a duplicate ratio of the diffances from the particles, the attraction towards a fpharical body, being (by prop. 74.) reciprocally

Sect. XIII. of Natural Pbilofopby. 293 ciprocally as the fquare of the diffance of the attraced body from the centre of the fphere, will not be fenfibly increased by the contact, and it will be fill left increased by it, if the attraction, in the reefs of the body attracted, decreafes in a frill left proportion. The proposition therefore is evident concerning attractive fpheres. And the cafe is the fame of concave fphrrical orbs attracting external bodies. And much more does it appear in orbs that attract bodies placed within them, because there the attractions differed through the cavities of thole orbs are (by prop. 70.) deftroyed by contrary attractions, and therefore have no effect even in the place of contact. Now if from thee fpheres and (pharical orbs we take away any parts remote from the place of contact, and add new parts any where at pleafure; we may change the figures of the attractive bodies at pleasure, but the parts added or taken away, being remote from the place of contact, will cause no remarkable excels of the attraction arifing from the contact of the two bodies. Therefore the proposition holds good in bodies of all figures. Q. E. D.

Proposition LXXXVI.Theorem XLIII.

If the forces of the particles of zehich an attractive body is comiofed, decreate, in the recess of the attracted body, in a triplicate or more than a triplicate ratio of the difance from the particles; the attraction will be U_{3} va ?ll

294 Mathematical Principles Book I. vafly fironger in the point of contact than when the attracting and attra. cited bodies are Separated from each other though by never fo small an interval.

For that the attraction is infinitely increased when the attracted corpufcie comes to touch an attracting sphere of this kind appears by the follton of problem 4 r . exhibited in the fecond and third examples. The fame will alfo appear (by comparing thole examples and theorem 4 I . togeother) of attractions of bodies made towards con-cavo-convex orbs, whether the attracted bodies be placed without the orbs, or in the cavities within them. And by adding to or taking from thole - spheres and orbs, any attractive matter any where without the place of contact, fo that the attradAtive bodies may receive any affined figure, the propofition will hold good of all bodies universally. Q.E.D.

Proposition LXXXVII. Theorem XLIV.

If two bodies fimilar to each other, and conning of matter equally attraGive, attract separately two cortufcles proportional to the le bodies, and in a like fituation to then: the accelerative attractions of the corpuscles towards the entire ladies weill le as the

Sect. XIII. of Nataral'Philofophy. 295 the accelerative attrncitions of the corpufcles 'tomeards fartizles of the bodies proportioial to the ubtiole's, and alike fitwated. iil them.

For if the bodies are divided into particles proportional to the wholes and allke fituated in them, it will be, as the attraction towards any particle of one of the bodies to the attraction towards the correfpondent particle in the other body, fo are the attractions towards the feveral particles of the firft body to the attractions towards the feveral correfpondent particles of the other body; and by compofition, f_{0} is the attraction towards the firft whole body to the attraction towards the fecond whole body. O. E. D.

Cor. I. Therfore, if as the diftances of the corpufcles attracted increafe, the attractive forces of the particles decreafe in the ratio of any power of the diftances; the accelerative attrâtions towards the whole bodies will be as the bodies directly and thofe powers of the diftances inverfely. As if the forces of the particles decreafe in a duplicate ratio of the diftances from the corpufcles attracted, and the bodies are as A^{3} and B^{3}, and therefore both the cubic fides of the bodics, and the diftance of the attracted corpufcles from the bodies are as A and B; the accelerative attractions towards the bodies will be as $\frac{A^{3}}{A^{2}}$ and $\frac{B^{2}}{B^{2}}$, that is, as A and B the cubic fides of thofe bodies. If the forces of the particles decreafe in a triplicate ratio of the diftances from the attracted corpufcles; the acceleU_{4} rative

296 Mathematical Principles Book I. rative attractions towards the whole bodies will be as $\frac{A^{3}}{A^{3}}$ and $\frac{B^{3}}{B^{3}}$, that is, equal. If the forces decrease in a quadruplicate ratio; the attractions towards the bodies will be as $\frac{A^{3}}{A^{4}}$ and $\frac{B^{3}}{B^{4}}$ that is, reciprocally as the cubic fides A and B. And fo in other cafes.
Cor. 2. Hence on the other hand, from the forces with which like bodies attract corpufles fimilarly fituated, may be collected the ratio of the decrease of the attractive forces of the pattiles as the attracted corpuscle recedes from them; if fo be that decrease is direaly or inverfely in any ratio of the diffances.

Proposition LXXXVIII. Theorem XLV.

If the attractive forces of the equal particles of any body lee as the difrance of the places from the partscles, the force of the zehole body will tend to its centre of gravity; and will be the fame with the force of a globe, confining of Similar and equal matter, and having its centre in the centre of. gravity.

Let the particles A, B, (Pl. 23. Fig. 7.) of the body $R S T V$, attract any corpuscle Z with forces which, fuppofing the particles to be equal between

Sect. XIII. of Natural Philoforby. 297
between themfelves, are as the diffances $A Z, B Z$; but if they are fuppofed unequal, are os thofe particles and their diffances $A Z, B Z$ conjunctly, or (if I may fo (peak) as thofe particles drawn into their diffances $A Z, E Z$ refpectively. And let thofe forces be expreffed by the contents under $A \times A Z$, and $B \times B Z$. Join $A B$, and let it be cut in G, fo that $A G$ may be to $E G$ as the particle B to the particle A; and G will be the common centre of gravity of the particles A and B. The force $A \times A Z$ will (by cor. 2. of the laws) be refolved into the forces $A \times G Z$ and $A \times A G$; and the force $B \times B Z$ into the forces $B \times G Z$ and $B \times B G$. Now the forces $A \times A G$ and $B \times B G$, becaufe A is proportional to B, and $B G$ to $A G$, are equal; and therefore having contrary directions deftroy one other. There remain then the forces $A \times G Z$ and $B \times G Z$. Thefie tend from Z inwards the centre G, and compofe the force $\overline{A-1} B \times G Z$; that is the fame force as if the attrative particles A and B were placed in their common centre of gravity G, compofing there a little globe.

- By the fame reafoning if there be added a third particle C, and the force of it be compounded with the force $\overline{A-1-E} \times G Z$ tending to the centre G; the force thence arifing will tend to the common centre of graviry of that globe in G and of the particle C; that is, to the common centre of gravity of the three particles A, B, C; and will be the fame as if thar globe and the particle C were placed in that common centre compofing a greater globe there. And fo we may go on in infinitum. Therefore the whole force of all the particles

298 Mathematical Principles Book I. particles of any body whatever RSTV, is the fame as if that body, without removing its centre of gravity, were to put on the form of a globe. Q.E. D.

Cor. Hence the motion of the attracted body Z will be the fame, as if the attracting body RSTV were fpharical; and therefore if that attracting body be either at reft, or proceed uniformly in a right line; the body attracted will move in an ellipfis having its centre in the centre of gravity of the attracting body.

Proposition LXXXIX.Theorem XLVI.

If there be Several bodies coiffing of equal particles whole forces are as the dijiances of the places from each; the force compounded of all the forces by which any corpuscle is attracted, will tend to the common centre of gravity of the attracting bodies; and weill le the fame as if thane attrading ladies, frcferving their common centre of gravity, Mould unite there, and be formed into a globe.

This is demonftrated after the fame manner as the foregoing propofition.
Cor. Therefore the motion of the attracted body will be the fame as if the attracting bodies, preferving their common centre of gravity, fhould unite

\dagger

Sect. XIII. of Natural Pbilofofby. 299
unite there, and be formed into a globe. And therefore if the common centre of gravity of the attracting bodies be either at reft, or proceeds uniformly in a right line; the attracted body will move in an ellipfis having its centre in the common centre of gravity of the attracting bodies.

Proposition XC. Problem XLIV,

If to the Several points of any circle there tend equal centripetal forces, increasing or decreafing in any ratio of the difiances; it is required to find the force with which a corpuscle is attracted, that is fituate any where in a right line wobich finds at right angles to the plane of the circle at its centre.

Suppose a circle to be defribed about the cenore A (Pl. 24. Fig. 1.) with any interval $A D$ in a plane to which the right line $A P$ is perpendicular; and let it be required to find the force with which a corpuscle P is attracted towards the fame. From any point E of the circle, to the attraced corpuscle P, let there be drawn the right line $P E$. In the right line $P A$ take $P F$ equal to $P E$, and make a perpendicular $F K$, erected at F, to be as the force with which the point E attracts the corpufle P. And let the curve line $I K L$ be

300 Mathematical Principles Book I.

 be the locus of the point K. Let that curve meet the plane of the circle in L. In $P A$ take $P H$ equal to $P D$, and erett the perpendicular $H I$ meeting that curve in I; and the attraction of the corpufcle P towards the circle will be as the area AHIL drawn into the altitude AP. Q.E. I.For let there be taken in $A E$ a very fmall line Ec. Join $P e$, and in $P E, P A$ take $P C, P f$ equal to P e. And becaufe the force with which any point E of the annulus defcribed about the cencre A with the interval $A E$ in the aforefaid plane, attracts to it felf the body P, is fuppofed to be as FK; and therefore the force with which that point attracts the body P towards A is as $\frac{A P \times F K}{P E}$; and the force with which the whole annulus attracts the body P towards A, is as the annulus and $\frac{A P \times F K}{P E}$ conjunctly; and that annulus alro is as the rectangle under the radius $A E$ and the breadth $E e$, and this rectangle (becaufe $P E$ and $A E, E e$ and $C E$ are proportional) is equal to the rectangle $P E \times C E$ or $P E \times F f$; the force with which that annulus attracts the body P towards A, will be as $P E \times F f$ and $\frac{A P \times F K}{P E}$ conjunctly; that is as the content under $F f \times F K \times A P$, or as the area $F K k f$ drawn into $A P$. And therefore the fum of the forces with which all the annuli, in the circle defcribed about the centre A with the interval $A D$, attract the body P towards A, is as the whole area $A H I K L$ drawn into AP. Q.E.D.

Cor. I. Hence if the forces of the points decreafe in the duplicate ratio of the diftances, that is, if $F K$ be as $\frac{1}{P F^{-}}$, and therefore the area $A H I K L$ as $\frac{\mathrm{I}}{P A}-\frac{1}{P H}$; the attration of the corpufcle P towards the circle will be as $\mathrm{I}-\frac{P A}{P \boldsymbol{H}}$; that is, as $\frac{A H}{P H}$.

Cor, 2. And univerfally if the forces of the points at the diftances D be reciprocally as any. power D^{n} of the diftances; that is, if $F K$ be as $\frac{\mathrm{I}}{\mathrm{D}^{\boldsymbol{n}}}$, and therefore the area $A H I K L$ as $\frac{\mathrm{I}}{\text { PAn-1 }}$
$-\frac{1}{P H^{n}=1}$; the attraction of the corpurcle P towards the circle will be as $\frac{1}{P A^{n}}=-\frac{P A}{P H^{n}=1} \cdots$

Cor. 3. And if the diameter of the circle be increafed in infinitum, and the number n be greater than unity; the attration of the corpufcle ${ }_{P}$ towards the whole infinite plane will be reciprocally as $P A^{\circ}=$? becaufe the other term $\frac{P A}{P H^{n}=-1}$ vanifhes.

To find the attraction of a cortafcle fituate in the axis of a round jolid, to whofe feveral points there tend equal centrifetal forces decreafing in any ratio of the difiances whatfoever.

Let the corpufcle P (TL 24. Fig. 2.) fituate in the axis $A B$ of the folid $D E C G$, be attracted towards that folid. Let the folid be cut by any circle as $R F S$, perpendicular to the axis; and in irs femi-diameter $F S$, in any plane $P A L K B$ paffing through the axis, let there be taken (by prop. 90.) the length $F K$ proportional to the force with which the corpufcle P is attracted towards that circle. Let the locus of the point K be the curve line $L K J$, meeting the planes of the outermoft circles $A L$ and $B I$ in L and I; and the attraction of the corpufcle P towards the folid will be as the area LABI. Q.E.I.

Cor. I. Hence if the folid be a cylinder defcribed by the parallelogram $A D E B$ (Pl. 24. Fig. 3.) revolved about the axis $A B$, and the centripetal forces tending to the feveral points be reciprocally as the fquares of the diftances from the points; the attraction of the corpufele P towards this cylinder will be as $A B-P E-P D$. For the ordinate $F K$ (by cor. 1. prop. 90.) will be as

Sect. XIII. of Natural Plithsophy. 303 $1-\frac{P F}{P R}$. The part x of this quantity, drawn into the length $A B$, defcribes the area $1 \times A B$; and the other part $\frac{P F}{P R}$, drawn into the length $P B$, deScribes the area I into $P E=A D$, (as may be eafily fhewn from the quadrature of the curve $L K I$; and in like manner, the fame part drawn into the length $P A$ defribes the area 1 into $\overline{P D-A D}$, and drawn into $A B$, the difference of $P B$ and $P A$, defribes into $\overline{P L-D}$, the difference of the areas. From the firft content $1 \times A B$ take away the laft content I into $\overline{P E-I^{\prime} D}$, and there will remain the arca $L A B I$ equal to I into $\bar{A} \bar{B} \overline{-P E-1} P D$. Therefore the force being proportional to this area, is as $A B-P E-\mid P D$.

Cor. 2. Hence alfo is known the force by which a fpheroid AGBC (Il. 24. Fig. 4.) attracts any body P ficuate externally in its axis $A B$. Let $N K R M$ be a conic feetion whofe ordinate $E R$ perpendicular to $P E$, may be always equal to the length of the line $P D$, continually drawn to the point D in which that ordinate cuts the fpheroid. From the vertices A, B, of the Ipheriod, let there be erceted to its axis $A B$ the perpendiculars $A K, B M$, refpectively equal to $A P$, $B P$, and therefore metting the conic fection in K and $M_{\text {; }}$ and join $K M$ cutting off from it the fegment KMRK. Let S be the centre of the fpheriod, and SC its greateft femi-diameter; and the force with which the fpheroid attrats the body P, will be to the force with which a fphere defribed with the diameter $A B$ attrats the fame bo-
dy , as $\frac{A S \times C S^{2}-P S \times K M R K}{P S^{2}-1-C S^{2}-A S^{2}}$ is to $\frac{A S^{3}}{3+S^{2}}$. And
by a calculation founded on the fame principles may be found the forces of the fegments of the fpheroid.

Cor. 3. If the corpufcle be placed within the fpheroid and in its axis, the attraction will be as its diffance from the centre. This may be eafily collected from the following reafoning, whether the particle be in the axis or in any other given diameter. Let AGOF (Pl. 24. Fig. 5.) be an attracting fpheroid, S its centre, and P the body attracted. Through the body P let there be drawn the femi-diameter $S P A$, and two right lines $D E$, $F G$ meeting the fpheroid in D and E, F and G; and let PCM, HLN be the fuperficies of two interior fpheroids fimilar and concentrical to the exterior, the firft of which paffes through the body P, and cuts the right lines $D E, F G_{i}$ in B and C; and the latter cuts the fame right lines in H and I, K and L. Let the fpheroids have all one common axis, and the parts of the right lines intercepted on both fides $D P$ and $B E, F P$ and $C G, D H$ and $I E, F K$ and $L G$ will be mutually equal; becaufe the right lines $D E, P B$, and $H I$ are bifected in the fame point, as are alfo the right lines $F G, P C$ and $K L$. Conceive now $D P F, E P G$ to reprefent oppofite cones defcribed with the infinitely fmall vertical angles $D P F, E P G$, and the lines $D H, E I$ to be infinitely fmall alfo. Then the particles of the cones $D H K F, G L I E$, cut off by the fpheroidical fuperficies, by reafon of the equality of the lines $D H$ and $E I$, will be to one another as the fquares of the diffances
from

Sect. XIII. of Natural Philofophy. 305 from the body r, and will therefore attratt that corpurcle equilly. And by a like reafoning if the fpaces $D P F, E G C B$ be divided into particles by the fuperficies of innumerable fimilar fpheroids concentric to the former and having one common axis, all thefe particles will equally attratt on both fides the body P towards contrary parts. Therefore the forces of the cone D PF, and of the conic fegment $E G C B$ are equal and by their contrariety deftroy each other. And the cale is the fame of the forces of all the matrer that lies without the interior fpheroid $P C B M$. Therefore the body P is attrated by the inerior (pheroid $P C B M$ alone, and therefore (by cor. 3. prop. 72.) its attration is to the force with which the body A is attrated by the whole fpheroid $A G O D$, as the diftance $P S$ to the diffance $A S$. Q. E. D.

Proposition XCII. Problem XLVI.

An attracting body being given, it is required to find the ratio of the decreafe of the centripstal forces tending to its Several points.

The body given muft be formed into a fphere, a cylinder, or fome regular figure whofe, law of attration anfwering to any ratio of decreafe may be found by prop. 80.8 r and 9 r . Then, by experiments, the force of the attractions muft be found at feveral diftances, and the law of atrration towards the whole, made known by that means, will give the ratio of the decreare of the forces of the eferal parts; which was to be found.
$X \quad$ Pro.

Proposition XCIII. Theorem XLVII.

If a folid be plane on one fide, and infinitely extended on all other fides, and confift of equal particles equally attractive, webole forces decreafe, in the recefs from the jolid, in the ratio of any pozeer greater than the fuare of the diftances; and a corpuscle placed towards either part of the plane is attracied by the force of the whole folid; I fay that the attractive force of the zebole Solid, in the recefs from its plane fuperficies, will decreafe in the ratio of a power webofe fide is the difance of the corpufcle from the plane, and its index lefs by 3 than the index of the power of the difances.

Case 1. Let LGl (Il. 24. Fig. 6.) be the plane by which the folid is terminated. Let the folid lie on that hand of the plane that is towards I, and let it be refolved into innumerable planes $m H M, n I N$, oKO, óc. parallel to $G L$. And firft let the attracted body C be placed without the folid. Let there be drawn CGHI perpendicular to thofe innumerable planes, and let the attractive forces of the points of the folid decreare in the ratio of a power of the diffances whofe index is the number n not lefs than 3. Therefore

Sect. XIİI. of Natural Philorophy. 307 (by cor. 3. prop. 90.) the force with which any plane $m H M$ atrrats the point C, is reciprocally as $C H^{*}-{ }^{2}$. In the plane $m H M$ take the length $H M$ reciprocally proportional to CH^{n-2}, and that force will be as $H M$. In like manner in the Feveral planes $I G L, n I N, \circ K O$, o ε. take the lengths $G L, I N, K O$, occ. reciprocally proportional to $C G^{n-2}, C I^{n-2}, C K^{n-2}, ~(\sigma$. and the forces of thofe planes will be as the lengths fo taken, and therefore the fum of the forces as the fum of the lengeths, that is, the force of the whole folid as the area $G L O K$ produced infinitely towards $O K$. But that area (by the known methods of quadratures) is reciprocally as $C G^{n}-3$, and therefore the force of the whole folid is reciprocally as $C G^{=-3}$. Q. E. D.

CASE 2. Let the corpufcle C(Fig. 7.) be now placed on that hand of the plane $I G L$ that is within the folid, and take the diffance $C K$ equal to the diftance CG. And the part of the folid LGloKO terminated by the parallel planes $I G L$, o $K O$, will attrate the corpuccle, firuate in the middle, neither one way nor another, the contrary actions of the oppofite points deftroying one another by reafon of their equality. Therefore the corpufcle C is attrated by the force only of the folid firuate beyond the plane $O K$. Bur this force (by cafe I .) is reciprocally as $C K^{n-3}$, that is (becaufe $C G, C K$ are equal) reciprocally as $C G^{n-3}$. O. E. D.
Cor. 1. Hence if the folid $L G I N$ be terminated on each fide by two infinite parallel planes $L G$, $I N$; its attrative force is known, fubdutting from the attrative force of the whole infinite folid $L G K O$, the attrative force of the more diffant part NIKO infinitely produced towards $K O$.

Cori

308 Mathenzatical Principles Book I.

Cor. 2. If the more diftant part of this rolid be rejetted, becaure its attration compared with the attraction of the nearer part is inconfiderable; the attration of that nearer part will, as the diffance increafes, decreafe nearly in the ratio of the power $C G^{-3}$.

Cor. 3. And hence if any finite body, plane on one fide, attrat a corpufcle fituate over-againft the middle of that plane, and the diftance between the corpufcle and the plane compared with the dimenfions of the attrating body be extremely fmall; and the attratting body confift of homogeneous particles, whofe attractive forces decreare in the ratio of any power of the diftances greater than the quadruplicate; the attrative force of the whole body will decreare very nearly in the ratio of a power whofe fide is that very fmall diftance, and the index lefs by 3 than the index of the former power. This affertion does not hold good however of a body confifting of particles whole attrative forces decreafe in the ratio of the triplicate power of the diffances; becaufe in that cafe, the attraction of the remoter part of the infinite body in the fecond corollary is always infinitely greater than the attrattion of the nearer part.
S C H O L I U M.

If a body is attrated perpendicularly towards a given plane, and from the law of attraction given the motion of the body be required; the problem will be folved by feeking (oy prop. 39.) the motion of the body defcending in a right line towards that plane, and (by cor. 2. of the laws) compounding that motion with an uniform motion, performed in

Plate XXIV.Vot.I.P.3o8.

Sect. XIII. of Natural Philofopby. 309 the direction of lines parallel to that plane. And on the contrary if there be required the law of the attraction tending towards the plane in perpendicular directions, by which the body may be caufed to move in any given curve line, the problem will be folved by working after the manner of the third problem.
But the operations may be contracted by refolving the ordinates into converging feries. As if to 2 bafe A the length B be ordinately applied in any given angle, and that length be as any power of the bafe A_{-}^{-}; and there be fought the force with which a body, either attrated towards the bafe or driven from it in the direttion of that ordinate, may be caufed to move in the curve line which that ordinate always defribes with its fuperior extremity; I fuppofe the bafe to be increafed by a very fmall part \mathbf{O}, and I refolve the ordinate $\left.\overline{A+O}\right|^{m}=$ into an infiaite feries $A_{n}^{\frac{m}{n}}-\frac{m}{n} O A^{\frac{m}{n}}$ $+\frac{m m-m n}{2 n n}$ OOA $\frac{m-2 n}{n}$ бc. and I fuppofe the force proportional to the term of this feries in which \mathbf{O} is of two dimenfions, that is, to the term $\frac{m m-m n}{2 n n} \mathrm{OOA}^{\frac{m-2 n}{n}}$. Therefore the force fought is as $\frac{m m-m n}{n n} \mathrm{~A}^{\frac{m-2 n}{n}}$, or which is the fame thing, 2s $\frac{m m-m n}{n n} \mathrm{~B} \frac{m-2 n}{m}$. As if the ordinate defribe 2 parabola, m being $=2$, and $n=1$, the force will be as the given quantity $2 \mathrm{~B}^{\circ}$, and therefore is giX_{3}
ven.

310 Mathematical Primcifles Book I. ven. Therefore with a given force the body will move in a parabola, as Galilco has demonftrated. If the ordinate defcribe an hyperbola, m being $=0-1$, and $n=1$; the force will be as $2 \mathrm{~A}^{-3}$ or $2 \mathrm{~B}^{3}$; and therefore a force which is as the cube of the ordinate will caufe the body to move in an hyperbola. But leaving this kind of propofitions, I fhall go on to fome others relating to motion which I have not yet touched upon.

Sect-

Sect. XIV. of Natural Pbilofophy. 3 II

Section XIV.

Of the motion of very fmall bodies when agitated by centripetal forces tending to the feveral parts of any revery great body.

Proposition XCIV. Theorem XLVIII.

If two fimilar mediums be feparated from each other by a fpace terminated on both fides by parallel planes, and a body in its pafjage through that fpace be attracted or impelled perpendicularly towards either of those mediums, and not agitated or bindered by any other force; and the attraction be every where the fame at equal diftances from either plane, taken toweards the fame band of the plane; I fay that the fine of incidence upon either plane will be to the fine of emergence from the other plane, in a given ratio.
Case 1. Let $A a$ and $B 6$ (Pl. 25. Fig. r.) be two parallel planes, and let the body light upon X_{4} the
the firft plane $A a$ in the direction of the line $G H$, and in its whole paffage through the intermediare ${ }^{e}$ fpace let it be attracted or impeilied towards the medium of incidence, and by that action let it be made to defribe a curve line $\boldsymbol{H} I$, and let it emerge in the direction of the line $I K$. Let there be eretted $I M$ perpendicular to $B b$ the plane of emergence, and meering the line of incidence $G H$ prolonged in M, and the plane of incidence A_{a} in R; and let the line of emergence $K I$ be produced and meet $H M$ in L. About the centre L, with the interval $L I$, let a circle be defrribed cutting both $H M$ in P and Q, and $M I$ produced in N; and firft, if the attraction or impulfe be fuppofed uniform, the curve HI (by what Galikeo has demonftrated) be a parabola, whofe property is, that a rectungle under its given latus rectum and the line $I M$ is equal to the fquare of $H M$; and moreover the line $H M$ will be bifected in L. Whence if to $M I$ there be let fall the perpendicular $L O$, $M O, O R$ will be equal ; and adding the equal lines $O N, O I$, the wholes $M N, I R$ will be equal allo. Thercfore fince $I R$ is given $M N$ is alfo given, and the reCtangle $N M I$ is to the retangle under the latus rectum and $I M$, that is, to $H M^{2}$, in a given ratio. But the reftangle $N M I$ is e qual to the rectungle $P M Q$, that is, to the difference of the fquares $M L^{2}$, and $P L^{2}$ or $L I^{2}$; and $H L^{2}$ hath a given ratio to its fourth part $M L^{2}$; therffore the ratio of $M L^{2}-L I^{2}$ to $M L^{2}$ is given, and by converfion the ratio of $L I^{2}$ to $M L^{2}$, and its fubduplicate, the ratio of $L I$ to $M L$. But in every triangle as $L M I$, the fines of the angles are proportional to the oppofite fides. Therefore the ratio of the fine of the angle of incidence $L M R$

Sect. XIV. of Natural Pbilofophy. 313 to the fine of the angle of emergence $L I R$ is given. Q. E. D.

CASE 2. Let now the body pals fucceffively through feveral fpaces terminated with parallel planes, $A a b B, b b c C$, \&c. (Pl. 25. Fig. 2.) and let it be acted on by a force which is uniform in each of them feparately, but different in the different Ppaces; and by what was juft demonftrated, the fine of the angle of incidence on the firft plane $A a$ is to the fine of emergence from the fecond plane $B 6$ in a given ratio; and this fine of incidence upon the fecond plane B6 will be to the fine of emergence from the third plane $C c$ in a given ratio; and this fine to the fine of emergence from the fourth plane $D d$ in a given ratio; and fo on in infinitum; and by equality, the fine of incidence on the firft plane to the fine of emergence from the laft plane in a given ratio. Let now the intervals of the planes be diminiihed, and their number be infintely increafed, fo that the action of attraction or impulfe, exerted according to any affigned law, may become continual, and the ratio of the fine of incidence on the firft plane to the fine of emergence from the laft plane being all along given, will be given then alfo. Q. E. D.
Proposition XĆV. Theorem XLIX. The fame things being fuppofed, I fay that the velocity of the body before its incidence is to its velocity after emergesce as the fine of emergence to the fine of incidence.
Make AH and Id equal (PL. 25. Fig. 3.) and ereat the perpendiculars $A G, d K$ meeting the lines of

314 Mathematical Principles Book I. of incidence and emergence $G H, I K$ in G and K. In $G H$ take $T H$ equal to $I K$, and to the plane Aa let fall a perpendicular $T v$. And (by cor. 2. of the laws of motion) let the motion of the body be refolved into two, one perpendicular to the planes $A a$, $B b, C c, \& c$. and another parallel to them. The force of attraction or impulfe, acting in direttions perpendicular to thofe planes, does not at all alter the motion in parallel directions; and therefore the body proceeding with this motion will in equal times go through thofe equal parallel intervals that lie between the line $A G$ and the point H, and betwen the point I and the line $d K$; that is, they, will defribe the lines $G H, I K$ in equal times. Therefore the velocity before incidence is to the velocity after emergence as $G H$ to $I K$ or $T H$, that is as $A H$ or $I d$ to $v H$, that is (fuppofing $T H$ or $I K$ radius) as the fine of emergence to the fine of incidence. Q. E. D.

Proposition XCVI. Theorem L.

The fame things being fuppofed, and that the motion before incidence is fwifter than afterwards; 1 Sey that if the line of incidence be inclined continually, the body will be at laft reflected, and the angle of reflexion will be equal to the angle of incidence.
For conceive the body paffing between the parallel planes $A a, B b, C c, \& C$. (Pl. 25. Fig. 4.) to defreibe parabolic arcs as above; and let thofe arcs be $H P, P Q, Q R, \& c$. And let the obliquity

Sect. XIV. of Natural Pbilofopby. 315 of the line of incidence $G H$ to the firf plane Aa be fuch, that the fine of incidence may be to the radius of the circle whofe fine it is, in the fame ratio which the fame fine of incidence hath to the fine of emergence from the plane $D d$ into the fpace $D d_{e} E$; and becaule the fine of emergence is now become equal to radius, the angle of emergence will be a right one, and therefore the line of emergence will coincide with the plane $D d$. Let the body come to this plane in the point R; and becaute the line of emergence coincides with that plane it is manifeft that the body can proceed no farther towards the plane Ee. But neither can it proceed in the line of emergence $R d$; becaufe it is perpetually attrated or impelled towards the medium of incidence. It will return therefore between the planes $C c, D d$, defribing an arc of a parabola $Q R q$; whofe principal vertex (by what Galike has demonftrated) is in R, cutting the plane $\boldsymbol{C c}$ in the fame angle at q, that it did before at Q; then going on in the parabolic arcs $q p, p h, \& c$. fimilar and equal to the former arcs Q $P, F H$, \&c. it will cut the reft of the planes in the fame angles at $p, h, \& \varepsilon$. as it did before in $P, H, O \subset$. and will emerge ar. laft with the fame obliquity at h, with which it firft impinged on that plane at H. Conceive now the intervals of the planes $A a, B b, C c, D d, E c, \& c$. to be infinitely diminifhed, and the number infinitely increafed, fo that the action of attraction or impulfe, exerted according to any affigned law, may become continual; and the angle of emergence remaining all along equal to the angle of incidence. will be equal to the fame alo at laft. Q. E. D.

316 Mathentatical Principles Book I.

Scholium.

Thefe attractions bear a great refemblance to the reflexions and refrations of light, made in a given ratio of the fecants, as was difcovered by Sellius ; and confequently in a given ratio of the fines, as was exhibited by Des Cartes. For it is now certain from the phanomena of Fupiter's Satellits confirmed by the obfervations of different Aftronomers, that light is propagated in fucceffion, and requires about feven or eight minutes to travel from the Sun to the Earth. Morenver the rays of light that are in our air (as lately was difcovered by Grimaldus, by the admiffion of light into a dark room through a fmall hole, which I have allo tried) in their paffage near the angles of bodies whecher tranfparent or opake (fuch as the circular and reCtancular edges of gold, filver and brafs coins, or of knives or broken pieces of ftone or glafs) are bent or infleted round thore bodies as if they were attrated to them; and thofe rays which in their paffage come neareft to the bodies are the moft inflected, as if they were moft attrated; which thing I my felf have alfo carefully oblerved. And thofe which pafs at greater diffances are lefs infletted; and thofe at ftill greater diffances are 2 little infletted the contrary way and form three fringes of colours. In Ph. 25. Fig. 6. s reprefents the edge of a knife or any kind of wedge AsB; and gowvog, fnunf, emtme, dlsld are rays infleted towards the knife in the arcs owo, nun, $m t m, l_{s} l_{j}$ which infection is greater or lefs according to their diftance from the knife. Now fince this infletion of the rays is performed in the air without the knife, it follows that the rays which

Sect. XIV. of Natural Pbilofophy. 317
which fall upon the knife are firft infleted in the air before they touch the knife. And the cafe is the fame of the rays falling upon glafs. The refraction therefore is made, not in the point of incidence, but gradually, by a continual infeAion of the rays; which is done partly in the air before they touch the glass, partly (if I miftake not) within the glafs, after they have entred it; as is reprefented (Pl. 25. Fig. 7.) in the rays ckzc, b ig b, $a b x a$ falling upon r, q, p, and inflected between k and z, i and y, b and x. Therefore becaure of the analogy there is between the propagation of the rays of light, and the motion of bodies, I thought it not amiss to add the following propofizions for optical ufes; not at all confidering the nature of the rays of light, or enquiring whether they are bodies or not; but only determining the trajeEtories of bodies which are extremely like the tre jettories of the rays.

Proposition XCVII. Problem XLVII.

Suppofing the fine of incidence upon any fuperficies to be in a given ratio to the fine of emergence; and that the inflection of the paths of thoje bodies near that fuperficies is performed in a very flort Space which may be confidered as a point; it is required to determine fuch a fuperficies as may caufe all the corpuscles ifjuing from any one given place to converge to another siven place.
Let A(IL. 25. Fig. 8.) be the place from whence the corpurcles diverge; B,the place to which

318 Mathematical Principles Book I.
which they fhould converge; $C D E$ the curve line which by its revolution round the axis $A B$ defcribes the fuperficies fought; D, E, any two points of that curve; and $E F, E G$ perpendiculars let fall on the paths of the bodies $A D, D B$. Let the point D approach to and coalefce with the point E; and the ultimate ratio of the line $D F$ by which $A D$ is increafed, to the line $D G$ by which $D B$ is diminifhed, will be the fame as that of the fine of incidence to the fine of emergence. Therefore the ratio of the increment of the line $A D$ to the decrement of the line $D B$ is given; and therefore if in the axis $A B$ there be taken any where the point C through which the curve $C D E$ mult pals, and $C M$ the increment of $A C$ be taken in that given ratio to $C N$ the decrement of $B C$, and from the centres A, B, with the intervals $A M, B N$, there be deferibed two circles curting each other in D; that point D will touch the curve fought $C D E$, and by touching it any where at pleafure, will determine that curve. Q. E. I.

Cor. 1. By caufing the point A or B to go off fometimes in infinitum, and fometimes to move towards other parts of the point C, will be obtained all thofe figures which Cartffuss has exhibited in his Optics and Geometry relating to refractions. The invention of which Cartefus having thought fit to conceal, is here laid open in this propofition.

Cor. 2. If a body lighting on any fuperficies $C D$ (Pl. 25. Fig. 9.) in the direction of a right line $A D$, drawn according to any law, fhould emerge in the direction of another right line $D K$; and from the point C there be drawn curve lines $C P, C Q$ always perpendicular to $A D, D K$; the increments of the lines $P D, Q D$, and therefore the

Sect. XIV. of Natural Philofophy. 319 the lines themielves $P D, Q D$, generated by thofe increments, will be as the fines of incidence and emergence to each other, and è contra.
Proposition XCVIII. Problem XLVIII.
The Same things Suppofed; if round the axis A B (Pl. 25. Fig. 10.) any attraEtive Juperficies be defcribed as CD , regular or irregular, through which the bodies ifjuing from the given place A muft pafs; it is required to find a fecond attractive fuperficies EF, tobich may make thofe bodies converge to a given. place B.
Let a line joining $A B$ cut the firft fuperficies in C and the fecond in E, the point D being taken any how at pleafure. And fuppofing the fine of incidence on the firft fuperficies to the fine of emergence from the fame, and the fine of emergence from the fecond fuperficies to the fine of incidence on the fame, to be as any given quantity M to another given quantity N ; then produce $A B$ to G, fo that $B G$ may be to $C E$ as $M-\mathrm{N}$ to N ; and $A D$ to H, fo that $A H$ may be equal to $A G$; and $D F$ to K fo that $D K$ may be to $D H$ as N to M . Join $K B$, and about the centre D with the interval $D H$ deffribe a circle meeting $K B$ produced in L, and draw $B F$ parallel to $D L$; and the point F will touch the line $E F$, which being turned round the axis $A B$ will defcribe the fuperficies foughr. Q. $E . F$.
For conceive the lines $C P, C \cup$ to be every where perpendicular to $A D, D F$, and the lines $E R, E S$

320 Mathematical Principles Book I. to $F B, F D$ refpectively, and therefore $Q S$ to be elways equal to $C E$; and (by cor. 2. prop. 97.) $P D$ will be to $Q D$ as M to N , and therefore as $D L$ to $D K$, or $F B$, to $F K$; and by divifion as $D L-F B$ or $P H-P D-F B$ to $F D$ or $F Q-Q D$; and by compofition as $P H-F F$ to $F Q$, that is, (becaufe $P H$ and $C G, Q S$ and $C E$ are equal) as $C E+B G-F R$ to $C E-F S$. But (becaufe $B G$ is to $C E$, as $\mathrm{M}-\mathrm{N}$ to N) it comes to pals alfo that $C E+B G$ is to $C E$ as M to N ; and therefore, by divifion, $F R$ is to $F S$ as M to N ; and therefore (by cor. 2. prop. 97.) the fuperficies $E F$ compels a body, falling upon it in the direction $D F$, to go on in the line $F R$ to the place B. Q.E.D.

> S C H OLIU M.

In the fame manner one may go on to three or more fuperficies. But of all figures the fpharical is the moft proper for optical ufes. If the object glaffes of telercopes were made of two glaffes of a Ipharical figure, containing water between them; it is not unlikely that the errors of the refrations made in the extreme parts of the fuperficies of the glaffes, may be accurately enough corrected by the refraCtions of the water. Such object-glafles are to be preferred before ellipric and hyperbolic glaffes, not only becaufe they may be formed with more eafe and accuracy, but becaufe the pencils of rays fituate without the axis of the glafs would be more accurately refratted by them. But the different refrangibility of different rays is the real obftacle that hinders optics from being made perfett by fpharical or any other figures. Unlefs the errors thence arifing can be correfted, all the labour fpent in correcting the others is quite thrown away.

The End of the Eirft Volume.

Plate XXV. Vol. I. P. 320.

Fig. 6.p.317.12\%
Fig. $8 . p$. 318 o, of

. 1
i
1
,
-

